• Title/Summary/Keyword: Oversampling Technique

Search Result 56, Processing Time 0.028 seconds

Enhancing machine learning-based anomaly detection for TBM penetration rate with imbalanced data manipulation (불균형 데이터 처리를 통한 머신러닝 기반 TBM 굴진율 이상탐지 개선)

  • Kibeom Kwon;Byeonghyun Hwang;Hyeontae Park;Ju-Young Oh;Hangseok Choi
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.5
    • /
    • pp.519-532
    • /
    • 2024
  • Anomaly detection for the penetration rate of tunnel boring machines (TBMs) is crucial for effective risk management in TBM tunnel projects. However, previous machine learning models for predicting the penetration rate have struggled with imbalanced data between normal and abnormal penetration rates. This study aims to enhance the performance of machine learning-based anomaly detection for the penetration rate by utilizing a data augmentation technique to address this data imbalance. Initially, six input features were selected through correlation analysis. The lowest and highest 10% of the penetration rates were designated as abnormal classes, while the remaining penetration rates were categorized as a normal class. Two prediction models were developed, each trained on an original training set and an oversampled training set constructed using SMOTE (synthetic minority oversampling technique): an XGB (extreme gradient boosting) model and an XGB-SMOTE model. The prediction results showed that the XGB model performed poorly for the abnormal classes, despite performing well for the normal class. In contrast, the XGB-SMOTE model consistently exhibited superior performance across all classes. These findings can be attributed to the data augmentation for the abnormal penetration rates using SMOTE, which enhances the model's ability to learn patterns between geological and operational factors that contribute to abnormal penetration rates. Consequently, this study demonstrates the effectiveness of employing data augmentation to manage imbalanced data in anomaly detection for TBM penetration rates.

Development of empirical formula for imbalanced transverse dispersion coefficient data set using SMOTE (SMOTE를 이용한 편중된 횡 분산계수 데이터에 대한 추정식 개발)

  • Lee, Sunmi;Yoon, Taewon;Park, Inhwan
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1305-1316
    • /
    • 2021
  • In this study, a new empirical formula for 2D transverse dispersion coefficient was developed using the results of previous tracer test studies, and the performance of the formula was evaluated. Since many tracer test studies have been conducted under the conditions where the width-to-depth ratio is less than 50, the existing empirical formulas developed using these imbalanced tracer test results have limitations in applying to rivers with a width-to-depth ratio greater than 50. Therefore, in order to develop an empirical formula for transverse dispersion coefficient using the imbalanced tracer test data, the Synthetic Minority Oversampling TEchnique (SMOTE) was used to oversample new data representing the properties of the existing tracer test data. The hydraulic data and the transverse dispersion coefficients in conditions of width-to-depth ratio greater than 50 were oversampled using the SMOTE. The reliability of the oversampled data was evaluated using the ROC (Receiver Operating Characteristic) curve. The empirical formula of transverse dispersion coefficient was developed including the oversampled data, and the performance of the results were compared with the empirical formulas suggested in previous studies using R2. From the comparison results, the value of R2 was 0.81 for the range of W/H < 50 and 0.92 for 50 < W/H, which were improved accuracy compared to the previous studies.

A PCM-to-PWM Conversion Technique Employing the Noise Shaping Filter (Noise Shaping filter를 이용한 PCM신호의 PWM신호로의 변환)

  • 김병재;김인철
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.175-178
    • /
    • 2002
  • 본 논문에서는 디지털 오디오 증폭기의 필수적인 부분인, PCM신호를 PW신호로 변환하는 기법에 대하여 고찰한다. 비교적 낮은 해상도의 PWM 신호로 변환할 때 발생하는 문제점들을 살펴보고, oversampling과 통과 대역에서 잡음을 억제하는 noise shaping을 적용한 기법에 대하여 살펴본다. 본 논문에서는 디지털 오디오 증폭기에 적합한 몇 가지 noise shaping 필터를 소개하고, 그들을 사용하였을 때 오디오 품질을 평가하였다.

  • PDF

CDBSMOTE : Class and Density Based Synthetic Minority Oversampling Technique (CDBSMOTE : 클래스와 밀도기반의 합성 소수 오버샘플링 기술)

  • Bae, Kyung-Hwan;Rhee, Kyung-Hyune
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.629-632
    • /
    • 2021
  • 머신러닝의 성능 저하에 크게 영향을 미치는 데이터 불균형은 데이터를 증강하거나 제거하여 해결할 수 있다. 본 논문에서는 지도학습에서 쓰이는 정답 데이터를 기반으로 새로운 데이터 증강기법인 CDBSMOTE을 제안한다. CDBSMOTE을 사용하면 임의의 값을 사용하지 않고, 기존의 데이터 증강기법의 문제점이었던 과적합을 최소화하며 지도학습 데이터를 효과적으로 증강시킬 수 있다.

PAPR reduction of OFDM systems using H-SLM method with a multiplierless IFFT/FFT technique

  • Sivadas, Namitha A.
    • ETRI Journal
    • /
    • v.44 no.3
    • /
    • pp.379-388
    • /
    • 2022
  • This study proposes a novel low-complexity algorithm for computing inverse fast Fourier transform (IFFT)/fast Fourier transform (FFT) operations in binary phase shift keying-modulated orthogonal frequency division multiplexing (OFDM) communication systems without requiring any twiddle factor multiplications. The peak-to-average power ratio (PAPR) reduction capacity of an efficient PAPR reduction technique, that is, H-SLM method, is evaluated using the proposed IFFT algorithm without any complex multiplications, and the impact of oversampling factor for the accurate calculation of PAPR is analyzed. The power spectral density of an OFDM signal generated using the proposed multiplierless IFFT algorithm is also examined. Moreover, the bit-error-rate performance of the H-SLM technique with the proposed IFFT/FFT algorithm is compared with the classical methods. Simulation results show that the proposed IFFT/FFT algorithm used in the H-SLM method requires no complex multiplications, thereby minimizing power consumption as well as the area of IFFT/FFT processors used in OFDM communication systems.

Imbalanced Data Improvement Techniques Based on SMOTE and Light GBM (SMOTE와 Light GBM 기반의 불균형 데이터 개선 기법)

  • Young-Jin, Han;In-Whee, Joe
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.12
    • /
    • pp.445-452
    • /
    • 2022
  • Class distribution of unbalanced data is an important part of the digital world and is a significant part of cybersecurity. Abnormal activity of unbalanced data should be found and problems solved. Although a system capable of tracking patterns in all transactions is needed, machine learning with disproportionate data, which typically has abnormal patterns, can ignore and degrade performance for minority layers, and predictive models can be inaccurately biased. In this paper, we predict target variables and improve accuracy by combining estimates using Synthetic Minority Oversampling Technique (SMOTE) and Light GBM algorithms as an approach to address unbalanced datasets. Experimental results were compared with logistic regression, decision tree, KNN, Random Forest, and XGBoost algorithms. The performance was similar in accuracy and reproduction rate, but in precision, two algorithms performed at Random Forest 80.76% and Light GBM 97.16%, and in F1-score, Random Forest 84.67% and Light GBM 91.96%. As a result of this experiment, it was confirmed that Light GBM's performance was similar without deviation or improved by up to 16% compared to five algorithms.

Quality Prediction Model for Manufacturing Process of Free-Machining 303-series Stainless Steel Small Rolling Wire Rods (쾌삭 303계 스테인리스강 소형 압연 선재 제조 공정의 생산품질 예측 모형)

  • Seo, Seokjun;Kim, Heungseob
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.12-22
    • /
    • 2021
  • This article suggests the machine learning model, i.e., classifier, for predicting the production quality of free-machining 303-series stainless steel(STS303) small rolling wire rods according to the operating condition of the manufacturing process. For the development of the classifier, manufacturing data for 37 operating variables were collected from the manufacturing execution system(MES) of Company S, and the 12 types of derived variables were generated based on literature review and interviews with field experts. This research was performed with data preprocessing, exploratory data analysis, feature selection, machine learning modeling, and the evaluation of alternative models. In the preprocessing stage, missing values and outliers are removed, and oversampling using SMOTE(Synthetic oversampling technique) to resolve data imbalance. Features are selected by variable importance of LASSO(Least absolute shrinkage and selection operator) regression, extreme gradient boosting(XGBoost), and random forest models. Finally, logistic regression, support vector machine(SVM), random forest, and XGBoost are developed as a classifier to predict the adequate or defective products with new operating conditions. The optimal hyper-parameters for each model are investigated by the grid search and random search methods based on k-fold cross-validation. As a result of the experiment, XGBoost showed relatively high predictive performance compared to other models with an accuracy of 0.9929, specificity of 0.9372, F1-score of 0.9963, and logarithmic loss of 0.0209. The classifier developed in this study is expected to improve productivity by enabling effective management of the manufacturing process for the STS303 small rolling wire rods.

Application of Random Over Sampling Examples(ROSE) for an Effective Bankruptcy Prediction Model (효과적인 기업부도 예측모형을 위한 ROSE 표본추출기법의 적용)

  • Ahn, Cheolhwi;Ahn, Hyunchul
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.8
    • /
    • pp.525-535
    • /
    • 2018
  • If the frequency of a particular class is excessively higher than the frequency of other classes in the classification problem, data imbalance problems occur, which make machine learning distorted. Corporate bankruptcy prediction often suffers from data imbalance problems since the ratio of insolvent companies is generally very low, whereas the ratio of solvent companies is very high. To mitigate these problems, it is required to apply a proper sampling technique. Until now, oversampling techniques which adjust the class distribution of a data set by sampling minor class with replacement have popularly been used. However, they are a risk of overfitting. Under this background, this study proposes ROSE(Random Over Sampling Examples) technique which is proposed by Menardi and Torelli in 2014 for the effective corporate bankruptcy prediction. The ROSE technique creates new learning samples by synthesizing the samples for learning, so it leads to better prediction accuracy of the classifiers while avoiding the risk of overfitting. Specifically, our study proposes to combine the ROSE method with SVM(support vector machine), which is known as the best binary classifier. We applied the proposed method to a real-world bankruptcy prediction case of a Korean major bank, and compared its performance with other sampling techniques. Experimental results showed that ROSE contributed to the improvement of the prediction accuracy of SVM in bankruptcy prediction compared to other techniques, with statistical significance. These results shed a light on the fact that ROSE can be a good alternative for resolving data imbalance problems of the prediction problems in social science area other than bankruptcy prediction.

Development of Prediction Model of Financial Distress and Improvement of Prediction Performance Using Data Mining Techniques (데이터마이닝 기법을 이용한 기업부실화 예측 모델 개발과 예측 성능 향상에 관한 연구)

  • Kim, Raynghyung;Yoo, Donghee;Kim, Gunwoo
    • Information Systems Review
    • /
    • v.18 no.2
    • /
    • pp.173-198
    • /
    • 2016
  • Financial distress can damage stakeholders and even lead to significant social costs. Thus, financial distress prediction is an important issue in macroeconomics. However, most existing studies on building a financial distress prediction model have only considered idiosyncratic risk factors without considering systematic risk factors. In this study, we propose a prediction model that considers both the idiosyncratic risk based on a financial ratio and the systematic risk based on a business cycle. Ultimately, we build several IT artifacts associated with financial ratio and add them to the idiosyncratic risk factors as well as address the imbalanced data problem by using an oversampling technique and synthetic minority oversampling technique (SMOTE) to ensure good performance. When considering systematic risk, our study ensures that each data set consists of both financially distressed companies and financially sound companies in each business cycle phase. We conducted several experiments that change the initial imbalanced sample ratio between the two company groups into a 1:1 sample ratio using SMOTE and compared the prediction results from the individual data set. We also predicted data sets from the subsequent business cycle phase as a test set through a built prediction model that used business contraction phase data sets, and then we compared previous prediction performance and subsequent prediction performance. Thus, our findings can provide insights into making rational decisions for stakeholders that are experiencing an economic crisis.

Adaptive Eigenvalue Decomposition Approach to Blind Channel Identification

  • Byun, Eul-Chool;Ahn, Kyung-Seung;Baik, Heung-Ki
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.317-320
    • /
    • 2001
  • Blind adaptive channel identification of communication channels is a problem of important current theoretical and practical concerns. Recently proposed solutions for this problem exploit the diversity induced by antenna array or time oversampling leading to the so-called, second order statistics techniques. And adaptive blind channel identification techniques based on a off-line least-squares approach have been proposed. In this paper, a new approach is proposed that is based on eigenvalue decomposition. And the eigenvector corresponding to the minimum eigenvalue of the covariance matrix of the received signals contains the channel impulse response. And we present a adaptive algorithm to solve this problem. The performance of the proposed technique is evaluated over real measured channel and is compared to existing algorithms.

  • PDF