• Title/Summary/Keyword: Overload faults

Search Result 23, Processing Time 0.016 seconds

Design Methodology of the Bus Configuration and Protection Coordination Basic Logics of Power Substation Using EMTP-RV (EMTP-RV를 이용한 변전소 모선 방식과 보호협조 기초 논리 설계 방법론에 대한 연구)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1129-1138
    • /
    • 2019
  • Since substations are structurally complex due to the concentration of protection coordination facilities with substation facilities for long distance power transmission, it is difficult to design a protection coordination system to minimize the spreading effect of the fault when a fault occurs on transmission line or distribution line. Therefore, in this paper, the bus configuration and the basic logic of protection coordination that have a major influence on the reliability of substation power supply were analyzed, and the substation protection coordination logic to detect internal and external faults was developed based on EMTP-RV. As the basic logic of substation protection coordination, the percent differential protection relay logic for substation internal fault detection and the overload protection relay logic for inference of external failure were modeled. Finally, the 154kV substation including the protection coordination logic was modeled using EMTP-RV, and the effectiveness of the protection coordination design methodology was confirmed through the several fault simulation cases based on EMTP-RV.

Arc Fault Circuit Interrupter Design using Microprocessor (마이크로프로세서를 이용한 아크결함 차단기 설계)

  • Yoon, Kwang-Ho;Ban, Gi-Jong;Lee, Hyo-Jik;Park, Byung-Suk;Nam, Moon-Hyon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.1
    • /
    • pp.12-18
    • /
    • 2007
  • As an arc fault interrupter, the AFCI mentioned in this paper has been designed to detect and interrupt arc faults due to wire deterioration, insulation, wire damage, loose connection, and excessive mechanical damage. Since AFCI is digital and uses mechanical and electric stress, the length of interruption against overload and over-current is much shorter than the current bi-metal method. Therefore, the risk of electrical fires has been reduced.

A deferring strategy to improve schedulability for the imprecise convergence on-line tasks (부정확한 융복합 온라인 태스크들의 스케쥴가능성을 향상시키기 위한 지연 전략)

  • Song, Gi-Hyeon
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.15-20
    • /
    • 2021
  • The imprecise real-time scheduling can be used for minimizing the bad effects of timing faults by leaving less important tasks unfinished if necessary when a transient overload occured. In the imprecise scheduling, every time-critical task can be logically decomposed into two tasks : a mandatory task and an optional task. Recently, some studies in this field showed good schedulability performance and minimum total error by deferring the optional tasks. But the schedulability performance of the studies can be shown only when the execution time of each optional task was less than or equal to the execution time of its corresponding mandatory task. Therefore, in this paper, a new deferring strategy is proposed under the reverse execution time restriction to the previous studies. Nevertheless, the strategy produces comparable or superior schedulability performance to the previous studies and can minimize the total error also.