• 제목/요약/키워드: Overload control

검색결과 253건 처리시간 0.017초

호흡곤란을 주소로 내원한 환자에서 혈청 B-type Natriuretic Peptide 검사의 유용성 : 폐성심과 좌심부전의 감별에 대하여 (The Application of B-Type Natriuretic Peptide Level of the Dyspneic Patients : Differentiation Between Cor Pulmonale and Left Ventricular Dysfunction)

  • 박홍훈;김세현;최정은;김강호;천석철;이지현;이용구;김인재;차동훈;홍상범;이지현
    • Tuberculosis and Respiratory Diseases
    • /
    • 제54권3호
    • /
    • pp.320-329
    • /
    • 2003
  • 연구배경 : 혈청 내 B-type natriuretic peptide (BNP)는 심실의 부피 증가나 압력 부하에 의해 주로 심실에서 분비된다. 몇몇의 보고에서 호흡곤란을 주소로 응급실에 내원한 환자들에서 BNP의 측정이 심부전과 폐질환을 감별하는데 도움이 된다고 보고하였다. 저자들은 호흡곤란을 주소로 내원한 환자에서 BNP의 측정이 우심실부전과 좌심실부전의 감별에 도움이 될 수 있는지를 알고자 이 연구를 시작하게 되었다. 방 법 : 포천중문의대 분당차 병원에 2002년 6월에서 2003년 3월까지 호흡곤란을 주소로 응급실을 내원한 환자 89명과, 정상 대조군으로 29명에서 방사선면역측정법을 이용하여 BNP를 측정하였다. 결 과 : 호흡곤란을 주소로 내원한 좌심실부전군(1군)과 우심실부전군(2군) 사이에는 유의한 BNP 값의 차이($682{\pm}314$ pg/mL vs. $149{\pm}94$ pg/mL, p=0.000)가 있었다. ROC 곡선을 이용하여 BNP 기준값을 219 pg/mL로 했을 때 좌심실부전군과 우심실부전군을 감별할 수 있는 민감도는 94.3%, 특이도는 92.9%, 양성 예측도는 97%, 그리고 음성 예측도는 86.7%였다. 결 론 : BNP는 호흡곤란을 주소로 응급실을 내원한 환자에서 좌심실부전과 우심실부전을 감별하는데 도움을 줄 수 있는 빠르고 유용한 검사방법이다.

시맨틱 웹 자원의 랭킹을 위한 알고리즘: 클래스중심 접근방법 (A Ranking Algorithm for Semantic Web Resources: A Class-oriented Approach)

  • 노상규;박현정;박진수
    • Asia pacific journal of information systems
    • /
    • 제17권4호
    • /
    • pp.31-59
    • /
    • 2007
  • We frequently use search engines to find relevant information in the Web but still end up with too much information. In order to solve this problem of information overload, ranking algorithms have been applied to various domains. As more information will be available in the future, effectively and efficiently ranking search results will become more critical. In this paper, we propose a ranking algorithm for the Semantic Web resources, specifically RDF resources. Traditionally, the importance of a particular Web page is estimated based on the number of key words found in the page, which is subject to manipulation. In contrast, link analysis methods such as Google's PageRank capitalize on the information which is inherent in the link structure of the Web graph. PageRank considers a certain page highly important if it is referred to by many other pages. The degree of the importance also increases if the importance of the referring pages is high. Kleinberg's algorithm is another link-structure based ranking algorithm for Web pages. Unlike PageRank, Kleinberg's algorithm utilizes two kinds of scores: the authority score and the hub score. If a page has a high authority score, it is an authority on a given topic and many pages refer to it. A page with a high hub score links to many authoritative pages. As mentioned above, the link-structure based ranking method has been playing an essential role in World Wide Web(WWW), and nowadays, many people recognize the effectiveness and efficiency of it. On the other hand, as Resource Description Framework(RDF) data model forms the foundation of the Semantic Web, any information in the Semantic Web can be expressed with RDF graph, making the ranking algorithm for RDF knowledge bases greatly important. The RDF graph consists of nodes and directional links similar to the Web graph. As a result, the link-structure based ranking method seems to be highly applicable to ranking the Semantic Web resources. However, the information space of the Semantic Web is more complex than that of WWW. For instance, WWW can be considered as one huge class, i.e., a collection of Web pages, which has only a recursive property, i.e., a 'refers to' property corresponding to the hyperlinks. However, the Semantic Web encompasses various kinds of classes and properties, and consequently, ranking methods used in WWW should be modified to reflect the complexity of the information space in the Semantic Web. Previous research addressed the ranking problem of query results retrieved from RDF knowledge bases. Mukherjea and Bamba modified Kleinberg's algorithm in order to apply their algorithm to rank the Semantic Web resources. They defined the objectivity score and the subjectivity score of a resource, which correspond to the authority score and the hub score of Kleinberg's, respectively. They concentrated on the diversity of properties and introduced property weights to control the influence of a resource on another resource depending on the characteristic of the property linking the two resources. A node with a high objectivity score becomes the object of many RDF triples, and a node with a high subjectivity score becomes the subject of many RDF triples. They developed several kinds of Semantic Web systems in order to validate their technique and showed some experimental results verifying the applicability of their method to the Semantic Web. Despite their efforts, however, there remained some limitations which they reported in their paper. First, their algorithm is useful only when a Semantic Web system represents most of the knowledge pertaining to a certain domain. In other words, the ratio of links to nodes should be high, or overall resources should be described in detail, to a certain degree for their algorithm to properly work. Second, a Tightly-Knit Community(TKC) effect, the phenomenon that pages which are less important but yet densely connected have higher scores than the ones that are more important but sparsely connected, remains as problematic. Third, a resource may have a high score, not because it is actually important, but simply because it is very common and as a consequence it has many links pointing to it. In this paper, we examine such ranking problems from a novel perspective and propose a new algorithm which can solve the problems under the previous studies. Our proposed method is based on a class-oriented approach. In contrast to the predicate-oriented approach entertained by the previous research, a user, under our approach, determines the weights of a property by comparing its relative significance to the other properties when evaluating the importance of resources in a specific class. This approach stems from the idea that most queries are supposed to find resources belonging to the same class in the Semantic Web, which consists of many heterogeneous classes in RDF Schema. This approach closely reflects the way that people, in the real world, evaluate something, and will turn out to be superior to the predicate-oriented approach for the Semantic Web. Our proposed algorithm can resolve the TKC(Tightly Knit Community) effect, and further can shed lights on other limitations posed by the previous research. In addition, we propose two ways to incorporate data-type properties which have not been employed even in the case when they have some significance on the resource importance. We designed an experiment to show the effectiveness of our proposed algorithm and the validity of ranking results, which was not tried ever in previous research. We also conducted a comprehensive mathematical analysis, which was overlooked in previous research. The mathematical analysis enabled us to simplify the calculation procedure. Finally, we summarize our experimental results and discuss further research issues.

골밀도검사의 올바른 질 관리에 따른 임상적용과 해석 -이중 에너지 방사선 흡수법을 중심으로- (A Study of Equipment Accuracy and Test Precision in Dual Energy X-ray Absorptiometry)

  • 동경래;김호성;정운관
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제31권1호
    • /
    • pp.17-23
    • /
    • 2008
  • 목적 : 골밀도검사의 중요한 부분을 차지하고 있는 검사장비 및 검사자의 정밀도와 정확도는 환경에 따라 차이가 있기 때문에 질 관리가 체계적으로 이루어져야 한다. 골밀도 검사장비의 노화 및 잦은 고장에 의하여 장비의 교체 및 추가 구입으로 인하여, 추적검사를 하는 환자들의 호환성에 문제가 있다. 따라서 장비 교체 및 증설 후 동일한 장비처럼 호환하여 시용해도 환자의 임상적인 골밀도 변화를 정확하고 정밀하게 반영할수 있는지 알아보고자 한다. 재료 및 방법 : 장비 정밀도는 GE Lunar Prodigy Advance 2 대의 장비 (P1, P2)와 HOLOGIC Spine Phantom(HSP)을 이용하여 각 장비에서 20 번씩 스캔하여 팬텀을 이용한 정밀도 데이터를 획득하였고 (Group 1), 여성 120명 (평균나이 48.78, $20{\sim}60$세)을 대상으로 각 장비에서 15명씩, 같은 환자가 두 번 촬영을 하여 각 검사자의 정밀도를 측정했다(Group 2), 또한 검사자의 정밀도는 팬텀(ASP)을 이용하여 매일 아침마다 질 관리 시행후 얻은은 데이터를 기준으로, 각각의 장비에서 HSP를 이용하여 각 장비에서 20번씩 스캔 후 데�歷� 획득하여 검사자정밀도 및교차 보정 데이터를 산출하였고(Group 3), 여성 120명(평균나이 48.78, $20{\sim}60$세)의 동일 환자를 대상으로 한 장비에서 한 번씩 교차로 측정하여 검사자 정밀도 및 교차보정 데이터를 산추라였다(Group 4). 결과 : Daily Q.C Data는 $0.996\;g/cm^2$, 변동계수(%CV) 0.08로 안정된 장비로서 Group 1에서 Mean${\pm}$SD 및 %CV값은 ALP(P1: $1.064{\pm}0.002\;g/cm^2$, $%CV=0.190\;g/cm^2$, P2: $1.061{\pm}0.003\;g/cm^2$, %CV=0.192). Group 2에서 Mean${\pm}$SD 및 %CV값은 P1: $1.187{\pm}0.002\;g/cm^2$, $%CV=0.164\;g/cm^2$, P2: $1.198{\pm}0.002\;g/cm^2$, %CV=0.163, Group 3에서의 Mean${\pm}$2SD 및 %CV는 P1 - (spine: $0.001{\pm}0.03\;g/cm^2$, %CV=0.94, Femur: $0.001{\pm}0.019\;g/cm^2$, %CV=0.96), P2 - (spine: $0.002{\pm}0.018\;g/cm^2$, %CV=0.55, Femur: $0.001{\pm}0.013\;g/cm^2$, %CV=0.48), Group 4에서 Mean${\pm}$2SD 및 %CV는, r값은 spine: $0.006{\pm}0.024\;g/cm^2$, %CV=0.86, r=0.995, Femur: $0{\pm}0.014\;g/cm^2$, %CV=0.54, r=0.998이였다. 결론 : HOLOGIC Spine Phantom과 LUNAR ASP %CV는 ISCD에서 규정한 정상오차 범위인 ${\pm}2%$안에 모두 포함되었고 BMD가 비교적 일정한 값을 유지하면 측정되어 뛰어난 재현성을 보였다. 하지만 Phantom은 환자의 체중이나 체지방 조성의 변화 등 임상적인 부분을 반영하는 데는 한계성을 갖고 있어 mis-calibration을 check하는데 유용할 것으로 판단된다. Group 3과 Group 4의 결과에서 환자를 하나의 장비로 두 번 측정한 값을 보았을 때와 두 대의 장비를 교차하여 측정한 값 모두 2SD값 이내에 포함되었고 선형회귀분석(Regression Analysis) r값이 0.99 이상으로 높은 정밀도와 상관도를 나타냄으로써 두 장비를 호환하여 추적검사를 시행하여도 영향이 없었다. 신뢰있는 BMD 산출을 위해서는 정기적으로 장비 및 검사자의 기능테스트와 이에 대한 적절한 교정행위가 이루어져야 할 것이다.

  • PDF