• Title/Summary/Keyword: Over-excitation

Search Result 295, Processing Time 0.022 seconds

Control of Sound Pressure inside a Flow Excited Cavity by Regulation of Vorticity Shedding (와류진동 조절에 의한 유동가진 공동 내부의 음압 제어)

  • Park, Jong-Beom;Hwang, Cheol-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1223-1229
    • /
    • 2007
  • Flow traveling over a cavity opening forms a vortex due to unstable shear layer and induces an aerodynamic pressure excitation from the diffusion of the vortex convecting out of the trailing edge of the opening. The interaction between the excitation force and the cavity response sustains resonance in the resonator(cavity) and locked-in vortex shedding at the leading edge of the opening. The aerodynamic excitation force can be described from the diffusion of the vortex over the trailing edge and the level of its diffusivity is related to the strength of vorticity seeded at the leading edge. In this study, the control scheme of the internal pressure oscillation was proposed from regulating the vorticity at the leading edge by use of an oscillating spoiler. It was found that the relative motion between the spoiler and the air mass at the cavity opening influenced vorticity strength and the control was achieved by direct feedback of the cavity pressure fluctuation to the actuator.

Control of Sound Pressure Inside a Flow Excited Resonator (유동가진 공명기 내부의 음압 제어)

  • Hwang, Cheol-Ho;Park, Jong-Beom
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.196-199
    • /
    • 2005
  • Flow traveling over a cavity opening forms a vortex due to unstable shear layer and induces an aerodynamic pressure excitation from the diffusion of the vortex convecting out of the trailing edge of the opening. The interaction between the excitation force and the cavity response sustains resonance in the resonator(cavity) and locked-in vortex shedding at the leading edge of the opening. The aerodynamic excitation force can be described from the diffusion of the vortex over the trailing edge and the level of its diffusivity is related to the strength of vorticity seeded at the loading edge. In this study, the control scheme of the internal pressure oscillation was proposed from regulating the vorticity at the leading edge by use of an oscillating spoiler. It was found that the relative motion between the spoiler and the air mass at the cavity opening influenced vorticity strength and the control was achieved by direct feedback of the cavity pressure fluctuation to the actuator.

  • PDF

Dynamic Characteristics of Parallel tine Pivoted Pad Thrust Bearing (평행라인 피봇식 추력베어링의 동특성 해석)

  • 이경우;김종수;제양규
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.111-118
    • /
    • 1999
  • In this paper, linearized dynamic characteristics of parallel line pivoted pad thrust bearing(hereinafter refer to PLP thrust bearing) was analyzed by perturbation method with inlet pressure. Inlet pressure and excitation frequency irfluence dynamic characteristics of PLP thrust bearing at all operating condition, such as angular pivot position, mass of pad. Therefore, the characteristics is have to analyzed with inlet pressure, excitation frequency, mass of pad and thickness of pad. Otherwise, the analysis is able to estimate the characteristics over or under.

  • PDF

Dynamic Characteristics of Parallel Line Pivoted Pad Thrust Bearing (평행라인 피봇식 추력베어링의 동특성 해석)

  • 이경우;김종수;제양규
    • Tribology and Lubricants
    • /
    • v.16 no.4
    • /
    • pp.274-281
    • /
    • 2000
  • In this paper, linearized dynamic characteristics of parallel line pivoted pad thrust bearing (here-inafter refer to PLP thrust bearing) was analyzed by perturbation method with inlet pressure. Inlet pressure and excitation frequency influence dynamic characteristics of PLP thrust bearing at all operating conditions, such as angular pivot position, mass of pad. Therefore, the characteristics have to be analyzed with inlet pressure, excitation frequency, mass of pad and thickness of pad. Otherwise, the analysis may be over or under estimate.

Optimal Design Method of Dynamic Vibration Absorber to Reduce Resonant Vibration Response of Ship Local Structure (선박 국부구조의 공진응답 저감을 위한 동흡진기 최적 설계 방법)

  • Kwon, Hyuk;Cho, Daeseung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.3
    • /
    • pp.134-140
    • /
    • 2022
  • Ship local structure sometimes experiences severe vibration due to the resonance with an excitation force generated by the propulsion system. In that case, the installation of dynamic vibration absorber such as Tuned Mass Damper (TMD) on the structure can be considered as an effective alternative countermeasure to reduce the troublesome vibration if structural modification or change of excitation frequencies is difficult. Meanwhile, the conventional optimal design method of TMD premises the target structure exposed on an excitation force without the constraint of its magnitude and frequency range. However, the frequencies of major ship excitation forces due to propulsion system are normally bounded and its magnitude is varied according to its operation speed. Hence, the optimal design of TMD to reduce the resonant vibration of ship local structure should be differently approached compared with the conventional ones. For the purpose, this paper proposes an optimal design method of TMD considering maximum frequency and magnitude variation of a target harmonic excitation component. It is done by both lowering the resonant response at the 1st natural frequency and locating the 2nd natural frequency over maximum excitation frequency for the idealized 2 degree of freedom system consisted of the structure and the TMD. For the validation of the proposed method, a numerical design case of TMD for a ship local structure exposed on resonant vibration due to a propeller excitation force is introduced and its performance is compared with the conventionally designed one.

Impact of incidence angle of seismic excitation on vertically irregular structures

  • Md. Ghousul Ansari;Sekhar C. Dutta;Aakash S. Dwivedi;Ishan Jha
    • Earthquakes and Structures
    • /
    • v.27 no.3
    • /
    • pp.227-237
    • /
    • 2024
  • The incidence angle of seismic excitation relative to the two orthogonal major axes of structures has been a subject of considerable research interest. Previous studies have primarily focused on single-storey symmetric and asymmetric structures, suggesting a minimal effect of incidence angle on structural behavior. This research extends the investigation to multi-storey structures, including vertically irregular configurations, using a comprehensive set of 20 near fault and 20 far field seismic excitation. The study employs nonlinear time-history analysis with a bidirectional hysteresis model to capture inelastic deformations accurately. Various structural models, including one-storey and two- storey regular structures (R1, R2) and vertically irregular structures with setbacks in one direction (IR1) and both directions (IR2), are analysed. The analysis reveals that the incidence angle has no discernible impact over the response of regular multi-storey structures. However, vertically irregular structures exhibit notable responses at corner columns, which decrease towards central columns, irrespective of the incidence angle. This response is attributed to the inherent mass distribution and stiffness irregularities rather than the angle of seismic excitation. The findings indicate that for both near fault and far field seismic excitation, the incidence angle's impact remains marginal even for complex structural configurations. Consequently, the study suggests that the angle of incidence of seismic excitation need not be a primary consideration in the seismic design of both regular and vertically irregular structures. These conclusions are robust across various structural models and seismic excitation characteristics, providing a comprehensive understanding the impact of incidence angle on seismic response.

Perturbation in the Earth's Pole due to the Recent 31 Large Earthquakes of Magnitude over 8.0

  • Na, Sung-Ho;Kyung, Jai-Bok
    • Journal of the Korean earth science society
    • /
    • v.37 no.5
    • /
    • pp.271-276
    • /
    • 2016
  • We present our estimate of pole shift caused by the recent 31 largest earthquakes of magnitude over 8.0. After reviewing theory of perturbation in the Earth's rotation, each co-seismic as well as post-seismic pole shifts by the earthquakes are acquired and illustrated. A total co-seismic excitation due to these earthquakes is ($x_1$, $x_2$)=(-3.35, 5.89) milliarcsec, which increased about twice the initial estimation when the post-seismic deformation is considered. The single largest co-seismic excitation by 2011 Japan earthquake was ($x_1$, $x_2$)=(-2.06, 2.36) milliarcsec, which corresponds to 9.7 cm pole shift on the surface of the Earth.

Estimation of a circulating current of a three-phase Y-${\Delta}$ Transformer (Y-${\Delta}$ 변압기의 순환전류 추정방법)

  • Kang, Yong-Cheol;Lee, Mi-Sun;Lee, Byung-Eun;Jang, Sung-Il;Kim, Young-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.363-365
    • /
    • 2006
  • This paper proposes an estimation method for a circulating current of a Y-${\Delta}$ Transformer. The delta winding current can be decomposed into the two components i.e. a non-circulating component and a circulating component. The former can be estimated using the line currents. However, the latter can not be estimated directly using the line currents. A first order differential equation for the circulating current is derived by applying the Kirchhoff's voltage law on the loop of the delta side. The circulating current can be estimated by the solving the differential equation. The performance of the proposed algorithm is investigated under various conditions including magnetic inrush and over-excitation. The algorithm can estimate the circulating current very accurately even under magnetic inrush and over-excitation.

  • PDF

A Modified Current Differential Relay for Transformer Protection (변압기 보호용 수정 전류차동 계전방식)

  • 강용철;김은수;원성호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.2
    • /
    • pp.80-86
    • /
    • 2004
  • During magnetic inrush or over-excitation, saturation of the core in a transformer draws a large exciting current, which can cause mal-operation of a differential relay. This paper proposes a modified current differential relay for transformer protection. The relay calculates core-loss current from the induced voltage and the core-loss resistance; the relay calculates the magnetizing current from the core flux and the magnetization curve. Finally, the relay obtains the modified differential current by subtracting the core-loss and the magnetizing currents from the conventional differential current. Comparison study with the conventional differential relay with harmonic blocking is also shown. The proposed technique not only discriminates magnetic inrush and over-excitation from an internal fault, but also improves the speed of the conventional relay.

On-line Tests of on the Yang-Yang Pumped Storage Plant for the Reactive Power Limits and the OEL Dynamics (양양양수 온라인 무효전력 운전범위 시험과 과여자제한기(OEL) 동특성 시험)

  • Kim, Dong-Joon;Moon, Young-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1343-1350
    • /
    • 2007
  • This paper describes the tests on the reactive power output limit and the Over-Excitation Limiter (OEL) dynamics of a generation unit. The suggested test methods on reactive limit can identify the allowable maximum/minimum reactive power at 100% rated MW in the steady-state unit operation condition. The on-line OEL test method can identify the time characteristics of OEL with the generation output at 50% of the rated MW. These methods are validated by applying to four Yang-Yang pumped storage units with 282 rated MVA each.