It is well known that the protein content of rice grain is an indicator of taste of cooked rice in the countries where people as the staple food. Ground-based optical sensing over the crop canopy would provide information not only on the mass of plant body which reflects the light, but also on the crop nitrogen content which is closely related to the greenness of plant leaves. The vegetation index has been related to crop variables such as biomass, leaf nitrogen, plant cover, and chlorophyll in cereals. The objective of this study was to investigate the correlation between GNDVI and NDVI values, and grain protein content at different dates and to estimate the grain protein content using G(NDVI) values. We measured Green normalized difference vegetation index [$GNDVI=({\rho}0.80{\mu}m-{\rho}0.55{\mu}m)/({\rho}0.80{\mu}m+{\rho}0.55{\mu}m)$] and [$GNDVI=({\rho}0.80{\mu}m-{\rho}0.68{\mu}m)/({\rho}0.80{\mu}m+{\rho}0.68{\mu}m)$] by using two different active sensors. The study was conducted during the rice growing season for three years from 2005 through 2007 at the experimental plots of National Institute of Agricultural Science and Technology. The experiments were carried out by randomized complete block design with the application of four levels of nitrogen fertilizers(0, 70, 100, 130kg N/ha) and the same amount of phosphorous and potassium content of the fertilizers. After heading stage, relationships between GNDVI of rice canopy and grain protein content showed the highly positive correlation at different dates for three years. GNDVI values showed higher correlation coefficients than that of NDVI during growing season in 2005-07. The correlation between GNDVI values at different dates and grain protein contents was highly correlated at early July. We attempted to estimate the grain protein content at harvesting stage using GNDVI values from early July for three years. The determination coefficients of the linear model by GNDVI values were 0.9l and the measured and estimated grain protein content at harvesting stage using GNDVI values highly correlated($R^2=0.96^{***}$). Results from this study show that GNDVI appeared very effective to estimate leaf nitrogen and grain protein content of rice canopy.
Ground-based optical sensing over the crop canopy provides information on the mass of plant body which reflects the light, as well as crop nitrogen content which is closely related to the greenness of plant leaves. This method has the merits of being non-destructive real-time based, and thus can be conveniently used for decision making on application of nitrogen fertilizers for crops standing in fields. In the present study relationships among leaf nitrogen content of rice canopy, crop growth status, and Normalized Difference Vegetation Index (NDVI) values were investigated. We measured Green normalized difference vegetation index($gNDVI=({\rho}0.80{\mu}m-{\rho}0.55{\mu}m)/({\rho}0.80{\mu}m+{\rho}0.55{\mu}m)$) and NDVI($({\rho}0.80{\mu}m-{\rho}0.68{\mu}m)/({\rho}0.80{\mu}m+{\rho}0.68{\mu}m)$) were measured by using two different active sensors (Greenseeker, NTech Inc. USA). The study was conducted in the years 2005-06 during the rice growing season at the experimental plots of National Institute of Agricultural Science and Technology located at Suwon, Korea. The experiments carried out with randomized complete block design with the application of four levels of nitrogen fertilizers (0, 70, 100, 130kg N/ha) and same amount of phosphorous and potassium content of the fertilizers. gNDVI and rNDVI increased as growth advanced and reached to maximum values at around early August, G(NDVI) were a decrease in values of observed with the crop maturation. gNDVI values and leaf nitrogen content were highly correlated at early July in 2005 and 2006. On the basis of this finding we attempted to estimate the leaf N contents using gNDVI data obtained in 2005 and 2006. The determination coefficients of the linear model by gNDVI in the years 2005 and 2006 were 0.88 and 0.94, respectively. The measured and estimated leaf N contents using gNDVI values showed good agreement ($R^2=0.86^{***}$). Results from this study show that gNDVI values represent a significant positive correlation with leaf N contents and can be used to estimate leaf N before the panicle formation stage. gNDVI appeared to be a very effective parameter to estimate leaf N content the rice canopy.
Kim, Donghyun;Lee, Haneul;Bae, Younghye;Joo, Hongjun;Kim, Deokhwan;Kim, Hung Soo
Journal of Wetlands Research
/
v.23
no.4
/
pp.287-295
/
2021
As facilities such as dam reservoir wetlands and agricultural irrigation reservoir wetlands are built, sedimentation occurs over time through erosion, sedimentation transport, and sediment deposition. Sedimentation issues are very important for the maintenance of reservoir wetlands because long-term sedimentation of sediments affects flood and drought control functions. However, research on resignation has been estimated mainly by empirical formulas due to the lack of available data. The purpose of this study was to calculate and compare the sediment deposition rate by developing a multiple regression model along with actual data and empirical formulas. In addition, it was attempted to identify potential causes of collapse by applying it to 64 reservoir wetlands that suffered flood damage due to the long rainy season in 2020 due to reservoir wetland sedimentation and aging. For the target reservoir, 10 locations including the GaGog reservoir located in Miryang city, Gyeongsangnam province in South Korea, where there is actual survey information, were selected. A multiple regression model was developed in consideration of physical and climatic characteristics, and a total of four empirical formulas and sediment deposition rate were calculated. Using this, the error of the sediment deposition rate was compared. As a result of calculating the sediment deposition rate using the multiple regression model, the error was the lowest from 0.21(m3km2/yr) to 2.13(m3km2/yr). Therefore, based on the sediment deposition rate estimated by the multi-regression model, the change in the available capacity of reservoir wetlands was analyzed, and the effective storage capacity was found to have decreased from 0.21(%) to 16.56(%). In addition, the sediment deposition rate of the reservoir where the overflow damage occurred was relatively higher than that of the reservoir where the piping damage occurred. In other words, accumulating sediment deposition rate at the bottom of the reservoir would result in a lack of acceptable effective water capacity and reduced reservoir flood and drought control capabilities, resulting in reservoir collapse damage.
The sigma naught (${\sigma}^0$) equation is essential to calculate geo-physical properties from Synthetic Aperture Radar (SAR) images for the applications such as ground target identification,surface classification, sea wind speed calculation, and soil moisture estimation. In this paper, we are suggesting new Kompsat-5 (K5) Radar Cross Section (RCS) and ${\sigma}^0$ equations reflecting the final SAR processor update and absolute radiometric calibration in order to increase the application of K5 SAR images. Firstly, we analyzed the accuracy of the K5 RCS equation by using trihedral corner reflectors installed in the Kompsat calibration site in Mongolia. The average difference between the calculated values using RCS equation and the measured values with K5 SAR processor was about $0.2dBm^2$ for Spotlight and Stripmap imaging modes. In addition, the verification of the K5 ${\sigma}^0$ equation was carried out using the TerraSAR-X (TSX) and Sentinel-1A (S-1A) SAR images over Amazon rainforest, where the backscattering characteristics are not significantly affected by the seasonal change. The calculated ${\sigma}^0$ difference between K5 and TSX/S-1A was less than 0.6 dB. Considering the K5 absolute radiometric accuracy requirement, which is 2.0 dB ($1{\sigma}$), the average difference of $0.2dBm^2$ for RCS equation and the maximum difference of 0.6 dB for ${\sigma}^0$ equation show that the accuracies of the suggested equations are relatively high. In the future, the validity of the suggested RCS and ${\sigma}^0$ equations is expected to be verified through the application such as sea wind speed calculation, where quantitative analysis is possible.
Kim, Young-Jo;Moon, Hye-Jin;Song, Bo-Ra;Lim, Jong-Soo;Heo, Eun-Jeong;Park, Hyun-Jung;Wee, Sung-Hwan;Moon, Jin-San
Journal of Food Hygiene and Safety
/
v.34
no.1
/
pp.94-99
/
2019
The objective of this study is to establish the shelf life of non-pasteurized whole egg, egg yolk and egg white liquid. Each sample was stored for two weeks at $5^{\circ}C$, $10^{\circ}C$, $15^{\circ}C$, and $25^{\circ}C$, and then sensory, microbial, and physicochemical tests were performed periodically. The estimation of shelf life was based on the microbial standards of total viable counts and coliforms. The chemical properties highly correlated with the sensory evaluation were also used. Our results showed that the shelf life was the most influenced by microbial properties. Exceptionally, however, whole egg and white liquid stored at $5^{\circ}C$ and $10^{\circ}C$ with limited bacterial growth were affected by chemical property. The shelf life of the three non-pasteurized liquids was calculated to be less than one day at over $15^{\circ}C$. At $5^{\circ}C$ and $10^{\circ}C$, the shelf life was calculated to be 5 d and 1 d for egg yolk liquid, 5 d and 5 d for egg white, and 7 d and 5 d for whole egg, respectively. Therefore, it is advisable to establish reasonable shelf life in the more specific manner based on consideration of these findings.
Jang, Si Hyeong;Cho, Jung Gun;Han, Jeom Hwa;Jeong, Jae Hoon;Lee, Seul Ki;Lee, Dong Yong;Lee, Kwang Sik
Journal of Bio-Environment Control
/
v.31
no.4
/
pp.384-392
/
2022
The objective of this study was to estimated nitrogen content and chlorophyll using RGB, Hyperspectral sensors to diagnose of nitrogen nutrition in apple tree leaves. Spectral data were acquired through image processing after shooting with high resolution RGB and hyperspectral sensor for two-year-old 'Hongro/M.9' apple. Growth data measured chlorophyll and leaf nitrogen content (LNC) immediately after shooting. The growth model was developed by using regression analysis (simple, multi, partial least squared) with growth data (chlorophyll, LNC) and spectral data (SPAD meter, color vegetation index, wavelength). As a result, chlorophyll and LNC showed a statistically significant difference according to nitrogen fertilizer level regardless of date. Leaf color became pale as the nutrients in the leaf were transferred to the fruit as over time. RGB sensor showed a statistically significant difference at the red wavelength regardless of the date. Also hyperspectral sensor showed a spectral difference depend on nitrogen fertilizer level for non-visible wavelength than visible wavelength at June 10th and July 14th. The estimation model performance of chlorophyll, LNC showed Partial least squared regression using hyperspectral data better than Simple and multiple linear regression using RGB data (Chlorophyll R2: 81%, LNC: 81%). The reason is that hyperspectral sensor has a narrow Full Half at Width Maximum (FWHM) and broad wavelength range (400-1,000 nm), so it is thought that the spectral analysis of crop was possible due to stress cause by nitrogen deficiency. In future study, it is thought that it will contribute to development of high quality and stable fruit production technology by diagnosis model of physiology and pest for all growth stage of tree using hyperspectral imagery.
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
/
v.27
no.4
/
pp.194-210
/
2022
The monthly inventory of dissolved inorganic carbon (CT) and its fluxes were simulated using a box-model for the southeastern Yellow Sea, bordering the northern East China Sea. The monthly CT data was constructed by combining the observed data representing four seasons with the data adopted from the recent publications. A 2-box-model of the surface and deep layers was used, assuming that the annual CT inventory was at the steady state and its fluctuations due to the advection in the surface box were negligible. Results of the simulation point out that the monthly CT inventory variation between the surface and deep box was driven primarily by the mixing flux due to the variation of the mixed layer depth, on the scale of -40~35 mol C m-2 month-1. The air to sea CO2 flux was about 2 mol C m-2 yr-1 and was lower than 1/100 of the mixing flux. The biological pump flux estimated magnitude, in the range of 4-5 mol C m-2 yr-1, is about half the in situ measurement value reported. The CT inventory of the water column was maximum in April, when mixing by cooling ceases, and decreases slightly throughout the stratified period. Therefore, the total CT inventory is larger in the stratified period than that of the mixing period. In order to maintain a steady state, 18 mol C m-2 yr-1 (= 216 g C m-2 yr-1), the difference between the maximum and minimum monthly CT inventory, should be transported out to the East China Sea. Extrapolating this flux over the entire southern Yellow Sea boundary yields 4 × 109 g C yr-1. Conceptually this flux is equivalent to the proposed continental shelf pump. Since this flux must go through the vast shelf area of the East China Sea before it joins the open Pacific waters the actual contribution as a continental shelf pump would be significantly lower than reported value. Although errors accompanied the simple box model simulation imposed by the paucity of data and assumptions are considerably large, nevertheless it was possible to constrain the relative contribution among the major fluxes and their range that caused the CT inventory variations, and was able to suggest recommendations for the future studies.
Journal of the Korean Institute of Landscape Architecture
/
v.50
no.4
/
pp.20-36
/
2022
This study aims to provide basic data for high-quality street tree management by setting reasonable management items and appropriate unit prices by reviewing the adequacy of current street tree management. Currently, street tree management items, except for street tree pruning, use general landscape tree quantity per unit for the street tree management quantity per unit. KEPCO (Korea Electric Power Corporation) applied pruning items from standard electric production infrastructure and carried out the activities at an average unit price of 51% lower for heavy pruning and 39% lower for light pruning than the standard estimate. This was judged to be a level that could not maintain or increase the quality of street tree management. It was determined that an appropriate standard unit price for street tree management was necessary. To improve the quantity per unit for the proper management of street trees, it was necessary to review costs in the field. However, due to the absence of data on actual construction costs in the domestic landscape field, detailed items of the US RSMeans Building Construction Cost Data (RSMeans) were reviewed, and the actual construction costs were calculated by applying personal domestic expenses. As a result, the standard of the estimated unit showed a good ratio of 107% for heavy pruning of street tree pruning compared to the actual construction cost, but light pruning was underestimated with a 59% ratio. Shrub pruning was 82%, weeding was 92%, tree fertilization was 87%, and windbreak wall installation was 91% under-engineered. In addition, it was also confirmed that the watering by sprinkler trucks and chemical spraying were over-designed compared to the actual construction cost at the rates of 118% and 124%, respectively. Due to the specificity of the street trees, the increase in personal expenses and the input cost of equipment, such as road safety controls, were judged to be the main cause of the underestimation of items. Therefore, it is necessary to add items related to street trees and general landscape trees to the landscape maintenance items of the standard of the estimated unit.
In 2010, large areas of European airspace were closed by the volcanic ash generated by the eruption of Icelandic volcano and it disrupted global trade, business and travel which caused a huge economic damage on the air transport industry. This brought concerned about the economic impact by the eruption of Mt. Baekdu volcano. In this paper, we analyze the affected areas of the air transport industry were decided by calculating the PM10 density of volcanic ash changed over time and by determining the safe upper limit of ash density in their airspace. We separate the sales in the air transport industry according to each airline, airport, and month to estimate the direct losses when all flights inside a restricted zone were canceled. Also, we estimate the indirect losses in regional output, income, and value-added of the different major industries using interindustry (input-output) analysis. There is no direct damage from VEI 1 to VEI 5. But when VEI is 6, all flights to and from Yangyang airport will be canceled due to the No Fly Zone. And some flights to and from the airports Gimhae, Ulsan and Pohang will be restricted due to the Time Limited Zone. When VEI is 7, Yangyang, Gimhae, Ulsan, Pohang and Daegu airports will be closed and all flights will be canceled and delayed. During this time, the total economic losses on the air transport industry are estimated at 8.1 billion won(direct losses of about 3.55 billion won, indirect losses of about 4.57 billion won). Gimhae international airport accounted for 92% of the total loss and is the most affected area according to the volcanic ash scenario of Mt. Baekdu.
Soryeon Park;Sanghun Son;Jaegu Bae;Doi Lee;Dongju Seo;Jinsoo Kim
Korean Journal of Remote Sensing
/
v.39
no.5_1
/
pp.655-667
/
2023
Algal bloom outbreaks are frequently reported around the world, and serious water pollution problems arise every year in Korea. It is necessary to protect the aquatic ecosystem through continuous management and rapid response. Many studies using satellite images are being conducted to estimate the concentration of chlorophyll-a (Chl-a), an indicator of algal bloom occurrence. However, machine learning models have recently been used because it is difficult to accurately calculate Chl-a due to the spectral characteristics and atmospheric correction errors that change depending on the water system. It is necessary to consider the factors affecting algal bloom as well as the satellite spectral index. Therefore, this study constructed a dataset by considering water quality, hydrological and meteorological factors, and sentinel-2 images in combination. Representative ensemble models random forest and extreme gradient boosting (XGBoost) were used to predict the concentration of Chl-a in eight weirs located on the Nakdong river over the past five years. R-squared score (R2), root mean square errors (RMSE), and mean absolute errors (MAE) were used as model evaluation indicators, and it was confirmed that R2 of XGBoost was 0.80, RMSE was 6.612, and MAE was 4.457. Shapley additive expansion analysis showed that water quality factors, suspended solids, biochemical oxygen demand, dissolved oxygen, and the band ratio using red edge bands were of high importance in both models. Various input data were confirmed to help improve model performance, and it seems that it can be applied to domestic and international algal bloom detection.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.