• 제목/요약/키워드: Over tension method

검색결과 122건 처리시간 0.024초

Filament winding에 의해 제조된 복합재료 NOL RING시험편의 최적 인장강도 평가법에 관한 연구 (A Study on the Optimum Evaluation Method for Tensile NOL Ring Specimen Manufactured by Filament Winding Process)

  • 권순철;임철문;배창원;엄수현;김윤해
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.203-207
    • /
    • 2000
  • Filament Winding Process is a comparatively simple operation in which continuous reinforcements in the form of roving are wound over a rotating mandrel. And now well established as a versatile method for storage tanks and pipe for the chemical and other industries . In this study, tensile strength of a filament wound ring specimens were evaluated by split disk test fixture and dress disk test fixture , The results obtained from experiments were compared with the theoretical values obtained by the rule of mixtures. And the purpose of this paper is the suggestion of an appropriate test method for the evaluation of tensile properties of filament wound structures .The tensile strength of a ring specimen tested by the dress disk test showed better agreement with the theoretical values than of a ring specimen tested by the split disk test because the stress concentration in edges of a split disk test fixture is more severe than that of dress disk test fixture. The results showed that the tensile strength of a ring specimen was influenced by the geometry of test fixture, the continuity of fibers, fiber-tension, fiber-end and stress concentration in specimen.

  • PDF

Theoretical and experimental studies of unbraced tubular trusses allowing for torsional stiffness

  • Chan, S.L.;Koon, C.M.;Albermani, F.G.
    • Steel and Composite Structures
    • /
    • 제2권3호
    • /
    • pp.209-222
    • /
    • 2002
  • This paper describes the buckling phenomenon of a tubular truss with unsupported length through a full-scale test and presents a practical computational method for the design of the trusses allowing for the contribution of torsional stiffness against buckling, of which the effect has never been considered previously by others. The current practice for the design of a planar truss has largely been based on the linear elastic approach which cannot allow for the contribution of torsional stiffness and tension members in a structural system against buckling. The over-simplified analytical technique is unable to provide a realistic and an economical design to a structure. In this paper the stability theory is applied to the second-order analysis and design of the structural form, with detailed allowance for the instability and second-order effects in compliance with design code requirements. Finally, the paper demonstrates the application of the proposed method to the stability design of a commonly adopted truss system used in support of glass panels in which lateral bracing members are highly undesirable for economical and aesthetic reasons.

Modeling the Influence of Gas Pressure on Droplet Impact Using a Coupled Gas/liquid Boundary Element Method

  • Park, Hong-Bok;Yoon, Sam S.;Jepsen Richard A.;Heister Stephen D.
    • 한국분무공학회지
    • /
    • 제11권2호
    • /
    • pp.89-97
    • /
    • 2006
  • An inviscid axisymmetric model capable of predicting droplet bouncing and the detailed pre-impact motion, influenced by the ambient pressure, has been developed using boundary element method (BEM). Because most droplet impact simulations of previous studies assumed that a droplet was already in contact with the impacting substrate at the simulation start, the previous simulations could not accurately describe the effect of the gas compressed between a failing droplet and the impacting substrate. To properly account for the surrounding gas effect, an effect is made to release a droplet from a certain height. High gas pressures are computationally observed in the region between the droplet and the impact surface at instances just prior to impact. The current simulation shows that the droplet retains its spherical shape when the surface tension energy is dominant over the dissipative energy. When increasing the Weber number, the droplet surface structure is highly deformed due to the appearance of the capillary waves and, consequently, a pyramidal surface structure is formed; this phenomenon was verified with our experiment. Parametric studies using our model include the pre-impact behavior which varies as a function of the Weber number and the surrounding gas pressure.

  • PDF

A Study on Stress Analysis of Orthotropic Composite Cylindrical Shells with a Circular or an Elliptical Cutout

  • Ryu, Chung-Hyun;Lee, Young-Shin;Park, Myoung-Hwan;Kim, Young-Wann
    • Journal of Mechanical Science and Technology
    • /
    • 제18권5호
    • /
    • pp.808-813
    • /
    • 2004
  • The stress analysis on orthotropic composite cylindrical shells with one circular or one elliptical cutout subjected to an axial force is carried out by using an analytical and experimental method. The composite cylindrical shell governing equation of the Donnell's type is applied to this study and all results are presented by the stress concentration factor. The stress concentration factor is defined as the ratio of the stress on the region around a cutout to the nominal stress of the shell. The stress concentration factor is classified into the circumferential stress concentration factors and the radial stress concentration factors due to the cylindrical coordinate of which the origin is the center of a cutout. The considered loading condition is only axial tension loading condition. In this study, thus, the maximum stress is induced on perpendicular region against axial direction, on the coordinate. Various cutout sizes are expressed using the radius ratio, (equation omitted), which is the radius of a cutout over one of the cylindrical shell. Experimental results are obtained using strain gages, which are attached around a cutout of the cylindrical shell. As the result from this study, the stress concentration around a cutout can be predicted by using the analytical method for an orthotropic composite cylindrical shell having a circular or an elliptical cutout.

A New Modality for Treating Congenital Melanocytic Nevus: "Cogwheel Pattern" Serial Excision Method

  • Kang, Hyun Gu;Park, Myong Chul;Park, Dong Ha
    • Archives of Plastic Surgery
    • /
    • 제41권4호
    • /
    • pp.418-420
    • /
    • 2014
  • Congenital melanocytic nevus consists of congregations of nevomelanocytes. It is found in approximately 1% of new born infants. Congenital melanocytic nevus needs to be excised before it transforms into a malignant lesion. Many strategies have been attempted for the removal and reconstruction of the nevus. Serial excision enables wound closure to be accomplished with a shorter scar than if the original lesion was elliptically excised in a single stage and reorientation of the scar closer to the relaxed skin lines. The routine utilization of an elliptical serial excision as a standard method of closure often leads to the formation of elongated scars and waste of skin. The "Cogwheel pattern" serial excision is a new technique for reducing the size of the nevus efficiently. Reducing the final scar length, distributing the tension over many directions, and having the chance of decrease in operation numbers are ultimately achieved with the use of the "Cogwheel pattern" serial excision.

압축된 방진고무의 강성 해석 (Stiffness Analysis of Compressed Rubber Components for Anti-Vibration)

  • 김국원;임종락;안태길
    • 한국정밀공학회지
    • /
    • 제16권6호
    • /
    • pp.141-147
    • /
    • 1999
  • Optical disk technology with a laser beam for data recording and retrieval is one of the most promising route for high density information storage in multimedia era. As the storage density and data transfer rates are increased, mechanical issues, mainly noise and vibration, become critical. Rubber materials are extensively used in various machine design application, mainly for vibration/shock/noise control devices. Over the years an enormous effort has been put into developing procedures to provide properties of rubber components with complex shape and under pre-deformed state. In this paper, non-linear large deformations of a rubber mount for optical disk drive were investigated using the finite element method. A tension test of rubber material was performed, to calculate a strain energy function. According to the pre-deformed state, the variation of rubber mount stiffness were calculated and the reliability of numerical results were checked by compared with the measuring the deflection values. Also, the effects of the pre-deformed rubber mount on the system dynamic characteristics were investigated and the relation between the static stiffness variation of rubber mount and the natural frequence variation of system was discussed.

  • PDF

Resonance and Response of the Submerged Dual Buoy/Porous-Membrane Breakwaters in Oblique Seas

  • Kee, S.T.
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.22-32
    • /
    • 2001
  • The numerical investigation of obliquely incident wave interactions with fully submerged dual buoy/porous-membrane floating breakwaters placed in parallel with spacing is studied based on linear potential theory and Darcy's law. The numerical solutions are obtained by using a discrete-membrane dynamic model and second-kind modified Bessel function distribution over the entire boundaries of fluid regions. First, numerical solutions for an idealized dual submerged system without buoys are obtained. Second, a more practical dual submerged system with membrane tension provided by buoys at its tops is investigated by the multi-domain boundary element method particularly devised for dual buoy/porous-membrane problems with gaps. The velocity potentials of wave motion are coupled with porous-membrane deformation, and solved simultaneously since the boundary condition on porous-membrane is not known in advance. The effects of varying permeability on membranes and wave characteristics are discussed for the optimum design parameters of systems previously studied. The inclusion of permeability on membrane eliminates the resonances that aggravate the breakwater performance. The system is highly efficient when waves generated by the buoys and membranes were mutually canceled and its energy at resonance frequency dissipates through fine pores on membranes.

  • PDF

Nonlinear probabilistic shear panel analysis using advanced sampling techniques

  • Strauss, Alfred;Ju, Hyunjin;Belletti, Beatrice;Ramstorfer, Maximilian;Cosma, Mattia Pancrazio
    • Structural Engineering and Mechanics
    • /
    • 제83권2호
    • /
    • pp.179-193
    • /
    • 2022
  • The shear behaviour of reinforced concrete members has been studied over the past decades by various researchers, and it can be simulated by analysing shear panel elements which has been regarded as a basic element of reinforced concrete members subjected to in-plane biaxial stresses. Despite various experimental studies on shear panel element which have been conducted so far, there are still a lot of uncertainties related to what influencing factors govern the shear behaviour and affect failure mechanism in reinforced concrete members. To identify the uncertainties, a finite element analysis can be used, which enables to investigate the impact of specific variables such as the reinforcement ratio, the shear retention factor, and the material characteristics including aggregate interlock, tension stiffening, compressive softening, and shear behaviour at the crack surface. In this study, a non-linear probabilistic analysis was conducted on reinforced concrete panels using a finite element method optimized for reinforced concrete members and advanced sampling techniques so that probabilistic analysis can be performed effectively. Consequently, this study figures out what analysis methodology and input parameters have the most influence on shear behaviour of reinforced concrete panels.

Orthodromic Transfer of the Temporalis Muscle in Incomplete Facial Nerve Palsy

  • Aum, Jae Ho;Kang, Dong Hee;Oh, Sang Ah;Gu, Ja Hea
    • Archives of Plastic Surgery
    • /
    • 제40권4호
    • /
    • pp.348-352
    • /
    • 2013
  • Background Temporalis muscle transfer produces prompt surgical results with a one-stage operation in facial palsy patients. The orthodromic method is surgically simple, and the vector of muscle action is similar to the temporalis muscle action direction. This article describes transferring temporalis muscle insertion to reconstruct incomplete facial nerve palsy patients. Methods Between August 2009 and November 2011, 6 unilateral incomplete facial nerve palsy patients underwent surgery for orthodromic temporalis muscle transfer. A preauricular incision was performed to expose the mandibular coronoid process. Using a saw, the coronoid process was transected. Three strips of the fascia lata were anchored to the muscle of the nasolabial fold through subcutaneous tunneling. The tension of the strips was adjusted by observing the shape of the nasolabial fold. When optimal tension was achieved, the temporalis muscle was sutured to the strips. The surgical results were assessed by comparing pre- and postoperative photographs. Three independent observers evaluated the photographs. Results The symmetry of the mouth corner was improved in the resting state, and movement of the oral commissure was enhanced in facial animation after surgery. Conclusions The orthodromic transfer of temporalis muscle technique can produce prompt results by applying the natural temporalis muscle vector. This technique preserves residual facial nerve function in incomplete facial nerve palsy patients and produces satisfying cosmetic outcomes without malar muscle bulging, which often occurs in the turn-over technique.

Hip Flexion during Intraoperative Insetting of a Perforator Flap for Reconstruction of an Ischial Sore

  • Nam, Su Bong;Oh, Heung Chan;Lee, Jae Woo;Song, Kyeong Ho;Bae, Seong Hwan
    • Archives of Reconstructive Microsurgery
    • /
    • 제25권2호
    • /
    • pp.43-48
    • /
    • 2016
  • Purpose: Perforator flap-using ischial sore reconstruction is performed in a prone position. But after the surgery, recurrence frequently occurs in a sitting position. In this sense, we introduce modified flap insetting method which closely resembles patient's sitting position to lessen the flap tension surgically. Materials and Methods: Authors tried to check a skin tension difference between prone position and sitting position in normal people group and to find out the importance of performing flap insetting in hip flexion position. Healthy volunteers were collected (n=20) and designed the same length of 4 divided sections around the ischium. Lengths of each section were measured when hip joint was flexed to 90 degree and when both hip and knee joints were flexed to 90 degree and the statistical evaluation was performed. Twenty cases with ischial sore underwent reconstructive surgery using perforator flap under hip flexion position and followed-up for any recurrences. Results: There was a meaningful difference between the joint flexed skin length and that of the neutral position. Flap showed sufficient thickness over 12 months. Conclusion: It seems that recurrence could be reduced when the reconstructed flap could sufficiently cover in a sitting position regarding its significant length difference in normal people group.