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ABSTRACT: The numerical investigation of obliquely incident wave interactions with fully submerged dual buoy/porous-membrane
floating breakwaters place‘d in parallel with spacing is studied based on linear potential theory and Darcy’s law. The numerical
solutions are obtained by using a discrete-membrane dynamic model and second-kind modified Bessel function distribution over the entire
boundaries of fluid regions. First, numerical solutions for an idealized dual submerged system without buoys are obtained. Second, a
more practical dual submerged system with membrane tension provided by buoys at its tops is investigated by the multi-domain
boundary element method particularly devised for dual buoy/porous-membrane problems with gaps. The velocity potentials of wave
motion are coupled with porous-membrane deformation, and solved simultaneously since the boundary condition on porous-membrane is
not known in advance. The effects of varying permeability on membranes and wave characteristics are discussed for the optimum design
parameters of systems previously studied. The inclusion of permeability on membrane eliminates the resonances that aggravate the
breakwater performance. The system is highly efficient when waves generated by the buoys and membranes were mutually canceled and
its energy at resonance frequency dissipates through fine pores on membranes.

INTRODUCTION the oblique seas. It is found that the efficiency of a dual membrane
breakwater can be significantly enhanced compared to the single

Floating flexible membrane breakwater has the desirable  buoy/membrane system case if it is properly designed. It is also
characteristics of being transportable, relatively inexpensive, reusable ~ found that the asymmetric system can function better than the
or sacrificial, and rapidly deployable. Thus it may be an ideal  Symmetric system through desirable tuning.
candidate as a portable temporal breakwater for the protection of
various coastalfoffshore structures and sea operations requiring Chwang (1983) developed a porous wavemaker theory to study
relatively calm sea states (e.g. Fowler et al, 1996). the problem of the generation of water waves by the harmonic

oscillation of thin permeable plate immersed in water of finite

In this regard, Thompson et al., (1992), Aoki et al, (1994), Kim  depth, and found that the porous effects reduces not only the wave
& Kee (1996), Williams (1996), Kee & Kim (1997), Cho et al, amplitude but also the hydrodynamic force acting on the
(1997, 1998) investigated the performance of vertical-flexible  wavemaker. Yu and Chawang (1994) investigated numerically the
membrane breakwaters. Kee & Kim (1997) have developed a theory problem of reflection and transmission of water waves by a
and numerical solution for a surface-piercing or fully submerged horizontally submerged plate in water of finite depth, and found that
and mechanically coupled system. A series of experiments for a @ plate with proper porosity can suppress significantly the wave
surface piercing or a fully submerged system was conducted in a  reflection. Cho and Kim (2000) studied the interaction of
two-dimensional wave tank. The comparison of numerical estimates monochromatic incident waves with a horizontal porous flexible
and experimental result shows the coming wave reflecting Membrane in the context of two-dimensional linear hydro-elastic
performances of those systems were reasonably predicted by the theory, and found that the overall performance of the horizontal
developed theory. Cho et al, (1997, 1998) investigated the flexible membrane can be further enhanced by using a proper
performance of a buoy/membrane wave barrier for obliquely ~ Porous material.
incident waves. They expanded the analytical and numerical
techniques developed in the previous research to dual systems for Ideally, the breakwater should have minimum transmission at lee
surface-piercing or submerged dual membrane idealized wave ~ side. It is also often desirable that the reflection should be small. In
barriers and more practical dual buoy/membrane wave barriers in  addition the breakwater has to be submerged in order to reduce the
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hydrodynamic pressure on the body of structures, and insure the
water circulation to prevent stagnation and pollution in the sheltered
region. In this point of view, the performance of the fully
submerged  floating breakwaters  is
investigated for arbitrary incident wave angles and for various

buoy/porous-membrane

permeability on membranes. This breakwater system is able to
reduce reflection and transmission simultaneously, and is a very
eco-friendly system. The fully submerged system allows gaps to
exist over and beneath the structures hinged at some distance over
sea bottom, which enables wave transmission through the gaps. The
obliquely incident surface waves traveling over long horizontal
submerged cylindrical buoy can be trapped inside of the dual
system, which act as wave scatterer reducing the wave amplitude,
and excites the energy dissipation through fine-pores on membranes.

To assess the efficiency of this dual submerged porous-flexible
system, two-dimensional multi-domain hydro-elastic formulation was
carried out in the context of linear wave-body interaction theory and
Darcy’s law. It is also assumed, for simplicity, which the buoy is
rigid and the heave motion of the buoy is negligible due to large
initial tension. The membrane connecting the buoy and seabed or
hinge at some distance above the seabed is assumed to be thin,
inextensible, and free to move in the transverse direction while
remaining uniform in the longitudinal direction. The coupling of
buoy and membrane motions was taken into consideration through
an appropriate boundary condition at the joint. The hydrodynamic
interaction of oblique incident waves with the combination of the
rigid and porous-flexible bodies was solved by the distribution of
the simple sources (modified Bessel function of the second kind)
that satisfy the Helmholz governing equation. The velocity potentials
of wave motion are fully coupled with membrane deformation and
porous damping based on Darcy’s law.

THEORY AND NUMERICAL METHOD

We  consider the dual
buoy/porous-membrane wave barrier with obliquely incident waves.

interaction  of floating
An inertial, Cartesian coordinate system (x, y) with its origin located
at the still water level is used as reference system. As shown in Fig.
1, the submerged dual system is composed of fully submerged
with
spacing, and allows flow passing over and beneath structures. The
front submerged breakwater is situated at x = (), and the second one
is situated x = ., and both breakwaters are assumed to be

buoy/vertical-flexible-porous-membrane  placed in parallel

extendable infinitely in the z-direction. The integration fluid domain
is subdivided into three domains. A plane monochromatic incident
wave train with small amplitude A and harmonic motion of frequency
o propagates towards the breakwater with an angle ¢ (wave
heading) with respect to x axis in water of constant depth /. For
ideal fluids, the wave field may be represented by a velocity potential

of an oblique wave @(x, v, z, ) = Rel{ $,(x, ) + ¢(x, v e "],
where Re denotes the real part of a complex expression, ;=v — 1,
t denotes time, and k,= k,sin @ is the wave number component in
the z direction, and k, is the wave number of the incident wave,
which is the positive real solution of the dispersion equation
w® = kygtanhkyk with g being the gravitational coefficient. Then,
the velocity potential of small amplitude of wave train height A,

wavenumber %, and wave heading & is given by

_igA _coshk(y+h)

1k,cos 8x
1) cosh &,/ &

$,=
@, is the known incident potential and ¢ is the time-independent
unknown scattered potential, which includes both diffraction and
radiation effects. The complex velocity potentials, ¢; in three fluid
domains /=1,2,3 (see Fig. 1.), satisfy the Helmholtz equation as
governing equation and the following linearized free-surface ( I'p),
bottom ( I'y), and Sommerfeld radiation conditions( I",):

Vi —ke=0 ., (I=1,2,3) @
—a)2¢,+g(ij}1=0 (on T C)
g (I @
lim (- ik)(8)=0 (on I., 1=1.3) ®)

where ['c is the vertical truncation boundaries at far fields and
n=(n,, n,) is the unit outward normal vector. Along the vertical
fictitious boundaries (matching boundaries) in fluids x=( and
x=d, the pressure and normal velocity are required to be

continuous as follows;

0, __ 04+

=1, o = ix at Ty 6)

Based on Darcy’s law the normal velocity inside of membrane with
fine pores is linearly proportional to the pressure difference between
the two sides of the membrane (Chwang 1983).
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Fig. 1 Coordinate system and integration domains for dual fully
submerged buoy/porous membrane breakwater
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Wy, = %(171 —p)= % i $— dii)e = w(y)e
at x=0,d, @)

The scattered potentials must satisfy the following linearized
kinematic boundary conditions on the membrane surface:

a J R . R
a;f; =—% =—jwt+ w(y)=— lw5+%pzw(¢;— b1
®

where ¢ is constant coefficient of dynamic viscosity, o is constant
fluid density, and B is a material constant called permeability

having the dimension of a length, and the harmonic membrane

By, H=Rel&x)e™ 1 in Egs. (D~®). For
simplicity, the heave motion of the buoy is assumed to be

motions

negligible under large initial tension of membrane. Then the
boundary condition on the floating buoy is

%-i-iw{r/lnx-}- 03n9}+—%%”— =0, /=1,2,3(on I'y)

an
&)
where  n,=xn,— yn,. To solve the present boundary value
problem, a three-domain boundary integral equation method using
simple sources along the entire boundary is developed, which can
be used for arbitrary bottom topography. Two auxiliary vertical
boundaries ( I'c) are located sufficiently far from the membrane

such that the radiation condition (5) is valid.

The fundamental solution (Green function) of the Helmholtz Eq.
@) is G=—(1/2mK k7). Here Ky(k, )= —y—In(k/2) is
the modified zeroth-order Bessel function of the second kind, and #»
is the distance from the source point (x',y") to the field point

(x,v). As r—(, one obtains the asymptotic behavior, where
y=1().5772 is known as Euler’s constant. Using recurrence formula
Kfw)y=—K, ()~ (v WK ()= (v/) K () — K, (), the
normal derivative of G is given by
0 Gl dn=(1/2r)kK,(k,7)0d ¥/ 3 n.

Applying Green’s second identity in each of the domains to the

unknown potentials ¢, and imposing the relevant boundary

conditions Egs. (3)~(9), the integral equations in each fluid domain
can be written as

Cort [ LK) 5 = oK)l
+ [ kK (kD 2L — ik K (k)b

+ frﬂ[(ﬁlszl(sz)% + ia)Ko(sz)(ﬂl nx-f- 773”5)

3 ¢y
an

+Kg(kz7’) ]dF

+ [ LodkkiCer) 55 = 5B dpukty (k.
+ s,% oKy (k, N1+ s 1w Ky(k,ndl"

(1=1,2,3 (10

B e
+ [ bikoKy (k)5 L dr=0

is the
solid-angle constant, s;=1, s3=—1, and the integral covers the
entire boundary of each fluid region. In Eq. (10), all the boundary
conditions of ¢, except for the dynamic boundary conditions of
buoy and membrane can be straightforwardly implemented. In fluid
domain [I geometries of half front buoy and half rear buoy exist.
In addition backward side of front membrane and forward side of
rear membrane is coexist with spacing .. In domain I s,=—1,

where v= 0?/g infinite-depth wave mnumber, C=

and s,=1 are for backward side of front membrane and forward

side of rear membrane respectively.

The integral Eq. (10) should be coupled with the equations of
motion of the membranes & and buoys 7, ;. In addition, the

disturbance potentials must satisfy the following linearized dynamic
boundary conditions on the membrane surface:

(on I,) an

yZ

2 . .
L8+ Ae= P (4~ 4ir)
where A= wV m/T with T and m being the membrane tension
and mass per unit length respectively. For a numerical approach the
discrete form of the equation of membrane motion for ;—#

element is given by

ot by — b 11— T(f)(%%)j+ T(j+1)(_%_€:)f+l

= —ml,»wzé(,-) (12)

where (0&/08),=(&xy—&nj-1)/ 28, I; is the length of the
j—th segment, and A¢;=(/;+/;;)/2. The geometric boundary
conditions at the seabed and the top connection points of membrane
0,—»,) are é=0at y=—h, é=p +Rp; at y=—r. Ris
distance from the connection point (0,— r.) to rotation center of

buoy.

Next, we consider the rigid-body motion of a buoy. As
mentioned before, it is assumed that the heave response is
negligible due to large initial tension. The coupled equations of

motion for sway and roll are given by

M~ X=F,— (Kys+ K,)X—Fr+ Fp 13)

where X is displacement of sway and roll, A/ is a mass matrix of
buoy, F, is hydrodynamic forces and moments on buoy, Ky is

the restoring forces and moments due to the hydrostatic pressure,
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K,, is sway and roll mooring stiffness coefficients including the
effects of pretension, F, is the nonlinear viscous drag force, and
these are detailed in Kee & Kim (1997). The symbol F; is forces
and moments on the buoys caused by the initial tension of
membrane at the connection points between membranes and buoys.

—sina (14)

=T . .
Fy (N”+1){ Rsinnycos @ — Rcos 73sina

where ¢ is the angle of membrane at the connections with respect
to the y axis and the symbol R is the radial distances from the
center of rotation of buoy to the connection point on buoy.
Assuming  the then cosa=1,
sina= ~(3&/vE y,+1, and Eq. (14) can be rewritten as

angle ¢ is  small,

2 2R 2 2
Fr=Tw,+n| I, In, { ,7.';}' Tvn| In, |En.

o 2 -

2R ., 2R 2R

lN,,, le le

15
This equation is composed of two terms: the first term is positive
restoring forces and moments to the each buoy, and the second
term is excitation force proportional to the motion amplitude of the
neighboring membrane element. Therefore, the membrane tensions
can be either restoring forces or excitations.

So far, we have obtained integral Eq. (10) for ¢, /=1,2,3,

and equation of membrane motion (12) and equations of buoy
motions (13). They are mutually coupled, so they need to be solved
simultaneously. If we discretize fluid domain 1 and 3 by NE, .

segments, and discretize middle domain 2 by NE,, we have
2NE1,3+NE2 ¢2’ and ¢3’ Nm/+Nmr'

unknowns for &, and £,, and four more unknowns 7,, 7, and

unknowns for ¢,

74, 75, where the sub notations f, » mean front and rear
respectively. Therefore, we have to solve NT number of linear
simultaneous equations. Here the numbers of NE, ;, NE,, NT is
given by

NE, 3= Np+ No+ Ny + N+ Ny + N+ N,
NEZ = N[:’i’ N),+ Nm/+ Nmr+ NHJ'+ NBr
NT= 2NE1‘3 + NE_g + Nm/‘l‘ N,,I,/+4

NUMERICAL RESULTS AND
DISCUSSIONS

The three-domain boundary element program has been developed
based on linear potential theory and Darcy’s law as described in the
preceding section, and was used to demonstrate the performance of

fully submerged dual buoy/porous-membrane floating breakwaters in
oblique seas. The membrane is assumed to be thin and inextensible.
It is also assumed that the initial membrane tension is large such
that heave motions are small compared to other responses and
dynamic tension is much smaller than the static tension. The
computational domain is defined as in Fig. 1. The two submerged
system is situated in parallel with spacing .. The submerged
buoy/porous-membrane system allows gap cy, ¢ 5, ¢,z, €5 Which
present front free surface gap, front bottom gap, and rear free
surface gap, rear bottorn gap respectively. The truncation boundary
is located 3-4 water depth away from the membrane to ensure that
local wave effect is negligible.

When the buoy is absent or negligibly small, the convergence of
the results with increasing the number of segments is also shown in
Figs. 3a~3b. for porous membrane system with permeability
B=5E-08. It is scen that the errors uniformly converges as the
number of segments is increased. The error (%) was calculated
from the energy conservation relation R%+ 72=1. For a
non-porous system the energy relation has to be satisfied to be near
zero error, but for a porous system it cannot be satisfied due to
energy dissipation. From this test, the number of total elements in
the half fluid domain N=250 gave sufficient accuracy and thus
was used for the ensuing computation. For the present numerical
results, viscous drag forces F'p, are not included unless mentioned
otherwise.

As coordinate system and computational domain are defined in
Fig. 2, the two submerged membrane system in parallel with
spacing and gaps. The convergence test of the developed BEM
program has been done for the

T=0.255, cy/ h=0.125, d./h=1

results with increasing the permeability coefficient

system design parameter
Figs. 3c~3f. shows the
B=0, 1E-09,
SE-09, 1E-08, SE-08, 1E-07, 5E-07, 1E-06. 7 is non-dimensional
(T/ogh®).  Figs. 3c~3d.
T, as function of kh. The transmitted

tension of membrane by shows

transmission coefficient

Cr=0.125h Cr=0.125h

.

[ v 4
T Cw=0125RF Cro=0.1250F

Fig. 2 Definite sketch of dual submerged permeable membrane
breakwater
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Fig. 3b Energy relation error for the convergence test of BEM for
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Fig. 3f Convergence test; Energy relation coefficients of varying
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wave is gradually reduced as B increases in Fig. 3a. When B
increase further over 1E-07, transmitted wave is increased. The
turning frequency from decreased transmission to increased
transmission migrates toward high frequency from kz=1.6 up to
kh=0.2 as B increased further. Fig. 3e. shows wave reflection
coefficients converged continuously according to the various B
values. Fig. 3f. shows the energy relation error (%) with respect to
varying B values. It is interesting that the limit value of B for
maximum energy dissipation exist over all frequencies k%2=0.2~6
for beam seas. When B is greater than 1E-07, the energy dissipation
effects starts to be diminished at k2=4.2, and gradually reduced
over all frequency band as B further increased.

The comparison of performances for an ideal dual submerged
T=0.225, ¢3x=0.125, d./h=1
with and without permeability is presented in Figs. 4a~4b. as
function of 4k and 6.
wavelength in the x-direction becomes shorter and submerged
systems with or without permeability (B=1E-07) turns out to be

membranes wave barrier of

In the oblique seas, the effective

little effective. When narrow gaps are allowed over and beneath
membrane, rapid variations of the potential flow near the gaps are
expected. In addition the front membrane motion in vertical
sinusoidal manner generates local standing waves, which is
exponentially decaying in the x-direction in the lee side. When the
initial tension is relatively large, gap is not small compared to wave
length, the positive effects of membrane hydrodynamics is

diminished for the shorter wavelength in oblique sea.

In reality, the buoyancy force of buoys can easily provide the
external tensions in membrane. However, the presence of large buoys
can significantly change the scattered wave field. In addition the
permeability on membrane dissipates the fluctuations by re-reflected
and radiated waves between two submerged vertical systems, and
behaves as dampers with relevant to its velocity. Therefore physical
phenomena of oblique interaction ~ with

wave submerged

buoy/porous-membrane dual systems are quite complicated.

The convergence test for the submerged dual buoy/
porous-membrane BEM code shows, in Figs. Sa~5b, that permeability
of membrane can enhance the efficiency only at the limited range of
frequencies. As B increased, the transmitted wave is decreased at some
region of frequencies k4=0.2~1.5 and kh=5.~6., and the
transmitted wave is increased at &4 =3.5~5.0 as shown in Fig. 5a.
As B increase, the reflection coefficient is gradually reduced up to
B=1E-08, and starts to increase in Fig. 5b. It means that the
hydrodynamic effects by membrane motions in vertical sinusoidal
manner are less than that of buoys for dual system with highly
permeable membranes.

The performance of dual submerged buoy/solid-membrane

floating wave barriers for 7,/K;,=0, Ti/Kp=0.1, t/a;=0.02,
a,-/h=0.2,c,-k/h=0.05,dc/h=1
These two systems have same design parameters, and allow

is shown in Figs. 6a~6b.

semi-pivotal motions of buoys with only joint moorings. Thus we
can observer several resonance in the performances, in which will
be subsequent to system failure or give severe damages on the
integrity of structures. After putting a permeability B=3E-08 on the
membranes, the resonance is quite diminished in transmission and
7a~7b. The amplitudes of
buoy/porous-membrane motion or forces on membranes are also of

reflection as shown in Figs.
practical interest and shown in Figs. 8~15. for the given system.
Figs. 8a~8b. show the profiles of the non-dimensional membrane
response amplitudes (per unit incident wave amplitude as function
of kh and vertical position y// for beam seas. As expected, the
response amplitude sharply increased at resonance frequencies,
which generate large propagating waves in lee side. It is interesting
that motion amplitude of rear membrane for #=(" is quite small
compare to that of front one, just except the frequencies near
resonance and low and high frequencies. The motion amplitudes of
front and rear membrane at these resonance frequencies is similar to
each other in their magnitudes. It is also interesting that response
of rear membrane for §=45" is a plane flat, so that it shows a
good performance for wide range of Ak except two resonances in
Fig. 9. The local force distribution for rear membrane is shown in
Fig. 10, and we can see that the force is greatly increased near
resonance to cause large membrane responses. We also can observe
zero force region and quite asymmetric hydrodynamic pressure
distribution in the vicinity of kk=4.5. The motion amplitudes of
front and rear buoys are shown in Figs. 11~12b, and sway motion
amplitude of rear buoy for #=(" is small enough for us to see
near zero motion at kk=1.5. The motion amplitudes of front (Fig.
11.) and rear (Fig. 12a.) buoys at resonance frequencies are similar
to each other in their magnitudes. Fig. 12b shows the motion
amplitude at joint between buoy and membrane, the amplitudes for
6=0" can be matched to the amplitudes of rear membrane at
highest vertical position y/# in Fig. 8b.

In practice, the amplitudes of buoy/porous-membrane motion are
of practical interest and shown in Figs. 13a~13b. and Figs. 15a~15c.
And the corresponding 7',, R, are shown in Fig. 7a~7b. for the

given system with permeability B=3E-08 on the membranes. The
sharp spikes in motion amplitudes of buoy/membrane are completed
eliminated after applying permeability on membranes. The
comparison of rear motions for B=0 (Fig. 8b.) and for B=3E-8 (Fig.
13a.) shows that amplitudes at low frequencies is significantly
reduced. However, the two peak-motion amplitudes of rear
membranes for B=3E-8 (Fig. 13b.) is slightly reduced compared to
those for B=0 (Fig. 9.) at the incident wave angle #=45" .
Similar phenomena occur in the comparison of force on membrane

and motions at joint.
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Fig. 4b The transmission coefficients as function of k4 and @
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Fig. 5a The transmission coefficients with varying permeability of
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calh=0.125,
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Fig. 5b The reflection coefficients with varying permeability of
membrane  for a=0", T/K ;=0.1, T,/K,.=0,
T,/K»=0.1, t/a;=0.02, a;/h=0.2, cuh=0.125
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Fig. 6a The reflection coefficients as function kA and @ for
TJ/K =0, T/Kp=0.1, ti/a;=0.02, a/h=0.2,
calh=0.05, d /h=1, E=0ED

Fig. 6b The transmission coefficients as function A% and ¢ for
T,//Ka=0, Ti/Kp=0.1, tifa,=0.02, a/h=0.2,
cu/h=0.05 d /h=1 E=0
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Fig. 7a The reflection coefficients as function k4 and 6 for
Tl'/Kﬂ:O’ Tz'/KQ:O-L

Fig. 8b Response of a rear membrane as function of 4% and y/4
culh=0.05, d /h=1, E=3E—8

for  9=0", T/K;=0, T/ /Kp=0.1,
aifh=0.2, cp/h=0.05, d /h=1, E=0E

tida;=0.02, a;i/h=0.2, tia,=0.02,

Fig. 7b The transmission coefficients as function k%4 and ¢ for
Ti/Kﬂ:O, T,‘/K,Q:O.].,

Fig. 9 Response of a rear membrane as function of &4 and y/#% for
tla;=0.02  afh=0.2 ° v
calh=0.05 d . /h=1, E=3E—-8

0=45"° N T,'/K,]:O, T,/KQ:OI, L‘,-/a,-=0.02, a,‘/h:O.Z,
calh=0.05 d./h=1, E=0E)

& \IA

Fig. 8a Response of a front membrane as function of ki and y/h

Fig. 10 Force distribution on a rear membrane as function of kk
for 0=0", T,’/K,]:O, T,/Klz=01, ti/a[20.02s

and g for Tl’/K,]:O, T,‘/KQ::O.L t,‘/dl':0.02, ai/h=0.2,
ailh=0.2, ca/h=0.05 d/h=1 E=0E0 cal h=0.05, d,/h=1, E=0H
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Fig. 11 Sway motion of front cylinder as function k% and & for Fig. 13a R of a rear membrane as function A and /k
T/K;=0, T/K=0.1, tila;=0.02, al/h=0.2, for 6=0° TJK =0, TJK »=0.1, ta.=0.02
aif/h=0.2, c@p/h=0.05, d /h=1 E=3E-38

calh=0.05, d /h=1, E=0F

Fig. 12a Sway motion of rear cylinder as function %% and ¢ for Fie. 13b R " bran function i and /A
. esponses of a rear membrane as function an
TJK.=0, TJKp=0.1, t]a,~0.02 a/h=02  ° Q Y
for =45 TJ/K =0, TiJ/Kp=0.1, t;a;=0.02,
ca/h=0.05, d /h=1, E=0E
ai/h=0.2, cu/h=0.05 d/h=1 E=3E—-38

{FpghA)

Fig. 12b Joint motion of rear cylinder as function k%% and @ for
T,‘/Kﬂ:O, Tj/K,'g:O.l, t,-/a,-=0.02, a,-/h=0.2,
calh=0.05, d./h=1, E=0ED

Fig. 14 Force distribution on a rear membrane as function of k&
and g for T/K,=0, Ti/Kp=0.1, ti/a;=0.02, a/h=0.2,
cw/h=0.05, d./h=1, E=3E—8
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Fig. 15a Sway motion of rear cylinder as function kk and & for  Fig, 16a The transmission coefficients of varying permeability of
T/K71=0, TJ/K»=0.1, tia;=0.02, a;/h=0.2, membrane as function %% and ¢ for
calh=0.05, d k=1 E=3E-8

T//Kﬁ:O.l, T,/K,]":Oa
T;‘/K;Q:O.ly

t.-/a,=0.02, di/h:O.Z

¢ il h=0.125,
d fh=1, E=0F)

Fig. 15b Roll motion of rear cylinder as function %k and 4 for  Fig. 16b The transmission coefficients of varying permeability of
Ti/K =0, Ti/Kp=0.1, t/a,=0.02  a/k=0.2, membrane as function ks and 8 for T /K ;=0, T,/K.=0,
culh=0.05 d./h=1, E=3E-8 T/Ep=0.1  t/a;=0.02 a/h=02  cu/h=0.125
dJh=1, E=1E-7

\norUA

Fig. 16c The transmission coefficients of varying permeability of
Fig. 15c¢ Joint motion of rear cylinder as function &i and ¢ for membrane as function &h and @ for 7°
Ti/Ka=0 TIKp=01  t/a;=0.02, e /h=0.2
culh=0.05, d./h=1, E=3E-§

f/K/,':O.L T,»/}(ﬁ:o,
T,-/K,:_):O.L

tila;=0.02, a/h=0.2,

Cﬂ?/h:().les
d/h=1, E=1E—§
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Finally, Figs. 16a~16c. shows the transmission coefficient as
function of non-dimensional frequencies and various wave headings
the various permeability B=0, 1E-07, 1E-06, and for

T/K;=0.1, T,/JK,=0, T,/K;=0.1, t/a;=0.02, ai/h=0.2,

calh=0.125, d./h=1. When the system adopt the permeability
coefficient B=1E-07, transmitted waves is decreased for wide range
of kh, however, it is increased in the vicinity of k4 =4.5. For the
large permeability coefficient B=1E-06, the transmission still is
decreased at the high and low frequency band. However, it is increased
at the frequency range of kh=1.2~5. The performance of this is

for

generally poor foy the mid-frequency range and over wide wave
headings. Therefore permeability coefficient B=1E-07 seems to be
proper within  dual
buoy/porous-membrane systems.

to maximize the energy dissipation

SUMMARY AND CONCLUSIONS

The interaction of oblique incident waves with submerged dual
buoy/porous-membrane solved the of
two-dimensional linear hydro-elastic interaction theory and Darcy’s
law. Both the ideal system composed of only submerged dual
porous-membrane with spacing and more practical dual submerged
buoy/porous-membrane  systems were considered. An adjusted
three-domain BEM was employed since the membrane is infinitely
thin and porous. The solutions of each domain were matched at the

was in context

respective membrane surfaces. Membrane motions and velocity
potentials were solved simultaneously because the body-boundary
condition on the porous-membrane is not known in advance, as
other hydro elastic problems.

Using the developed program code, the performance of fully
submerged dual systems in oblique waves was tested with various
breakwater design parameters, wave conditions, and permeability on
membranes. From these examples, it is shown that the use of the
submerged dual buoy/flexible porous-membranes can significantly
increase the overall wave blocking efficiency in normal and oblique
incident waves except long wave frequencies. Allowing motion of
buoys and membranes, the mutual cancellation effect of incident
waves and scattered waves significantly enhance the performance as
breakwaters. Applying proper permeability on membrane eliminates
resonance of system to secure the safety of structural dynamics, and
reduces transmission and reflection. In addition it insure economical
manufactures, operation, andmaintains. Using a properly devised
asymmetric system, which can complement each other, we can
further enhance the efficiency. In most cases, mooring type, gaps,
proper permeability, and size of buoy for sufficiently large
membrane tension needs to be provided to guarantee high
performance over a wide range of wave frequencies.

Using the developed computer program, an optimum design for a

S. T.

Kee

given sea condition can be determined through a comprehensive
parametric study including various buoy shapes. To see the effects
of large motions and high waves, a nonlinear time-domain program
needs to be developed.
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