• Title/Summary/Keyword: Over Load

Search Result 2,155, Processing Time 0.04 seconds

Centrifuge modelling of rock-socketed drilled shafts under uplift load

  • Park, Sunji;Kim, Jae-Hyun;Kim, Seok-Jung;Park, Jae-Hyun;Kwak, Ki-Seok;Kim, Dong-Soo
    • Geomechanics and Engineering
    • /
    • v.24 no.5
    • /
    • pp.431-441
    • /
    • 2021
  • Rock-socketed drilled shafts are widely used to transfer the heavy loads from the superstructure especially in mountainous area. Extensive research has been done on the behavior of rock-socketed drilled shafts under compressive load. However, little attention has been paid to uplift behavior of drilled shaft in rock, which govern the overall behavior of the foundation system. In this paper, a series of centrifuge tests have been performed to investigate the uplift response of rock-socketed drilled shafts. The pull-out tests of drilled shafts installed in layered rocks having various strengths were conducted. The load-displacement response, axial load distributions in the shaft and the unit skin friction distribution under pull-out loads were investigated. The effects of the strength of rock socket on the initial stiffness, ultimate capacity and mobilization of friction of the foundation, were also examined. The results indicated that characteristics of rock-socket has a significant influence on the uplift behavior of drilled shaft. Most of the applied uplift load were carried by socketed rock when the drilled shaft was installed in the sand over rock layer, whereas substantial load was carried by both upper and lower rock layers when the drilled shaft was completely socketed into layered rock. The pattern of mobilized shaft friction and point where the maximum unit shaft friction occurred were also found to be affected by the socket condition surrounding the drilled shaft.

A Study on the Static and Dynamic Characteristics of Raised Girder Bridges (양각 거더교의 정적·동적특성에 관한 연구)

  • Ji-Yeon Lee;Sung Kim;Sung-Jin Park
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.851-858
    • /
    • 2023
  • Purpose: A study was conducted to ensure the structural safety of a raised girder bridge with improved cross-sectional efficiency compared to the conventional PSC girder. For this purpose, the cross-sectional specifications such as girder length, height, and width were determined, the arrangement of the tendons was designed, and the practical performance of the raised girder under static and dynamic loads was verified. Method: The static performance experiment examined the serviceability limit state by measuring behavioral responses such as deflection and cracking to primary and secondary static loads. In addition, the dynamic load loading experiment measured the acceleration and displacement behavior response over time to calculate the natural frequency and damping ratio to examine the usability limit state. Result: As a result of the static performance test, the deflection value based on the maximum applied load showed stable behavior, and the crack width measured at the maximum applied load level was very small, satisfying the serviceability limit state. In addition, a natural frequency exceeding the natural frequency calculated during the design of the dynamic loading experiment was found, and a damping ratio that satisfies the current regulations was found to be secured.

Effects of the buried lamellar tears on the mechanical strength in the welded T joints (T형상용접 이음에서 매몰된 라멜라균열이 용접부의 기계적 강도에 미치는 영향)

  • 고진현
    • Journal of Welding and Joining
    • /
    • v.6 no.4
    • /
    • pp.44-53
    • /
    • 1988
  • The mechanical strengths of buried lamellar tears located near the weld toe in the welded tee joints were evaluated in terms of the loss of load carrying capacity as a function of tear area. In static loading, the load carrying capacity was significantly reduced when tear intercepted over 10% of the cross-sectional area of the welded joints. However, the welded joints containing buried tears still failed at stresses over the yield strength of the base metal in the through-thickness direction in spite of the presence of tears up to 20-25% of the area. Fatigue strength of welded joints containing tears markedly reduced with increasing tear areas. Lehigh lamellar tearing test used in this study to produce speicmens was described in detail. The load carrying cpapacity in static loading was influenced by the reduction of supporting area whereas that in fatigue loading was influenced by the stress-concentration effects of lamellar tears and the reduction of supporting area. In bend tests, the pre-existing lamellar tears always grew up toward the weld toe. However, in fatigue loading, cracks grew up and down simultaneously form both the weld toe and the top of lamellar tears because of stress concentration. In fatigue loading, delaminations and decohesion of inclusion/matrix interface generated in multipass welds provided crack propagation paths and enhanced crack propagation because the tips of delaminations and deconhesios acted as stress raisers.

  • PDF

Prediction of Surface Crack Growth Considering the Wheel Load Increment Due to Rail Defect (레일손상에 의한 윤중증가를 고려한 표면균열 성장예측)

  • Jun, Hyun-Kyu;Choi, Jin-Yu;Na, Sung-Hoon;You, Won-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1078-1085
    • /
    • 2011
  • Prediction of a minimum crack size for growth, which is defined as a crack size that grows fast enough to keep ahead of its removal by contact wear and periodic grinding, is the most demanding work to prevent rail from fatigue failure and develop cost effective railway maintenance strategy In this study, we investigated the wheel load increment due to a rail defect during a train ran over it, and its effect on the minimum crack size for growth. For this purpose, we developed simulation software based on the Fletcher and Kapoor's "2.5D" model and measured wheel load increment during a train passed over a defect. A maximum contact pressure and contact patch size were calculated by 3D FEM and crack growth analyses were performed by varying two of dominant contact contributors; surface friction coefficient(0.1, 0.2, 0.3 and 0.4) and crack aspect ratio. The minimum crack sizes for growth were calculated from 0.29 to 1.44mm depending on the contact conditions. They were decreasing with increasing surface friction coefficient and decreasing with crack aspect ratio(a/b).

The Performance of Large-diameter Bored Piles and Large-section Barrettes in Decomposed Geomaterials in Hong Kong

  • Ng Charles W.W.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.334-408
    • /
    • 2006
  • In Hong Kong, large-diameter (${\ge}600mm$) bored piles and large-section excavated rectangular barrettes are commonly used to support tall buildings to resist both vertical and horizontal loads. These piles and barrettes penetrate through and may found in saprolitic soils and decomposed rocks. Generally, the design of these large bored piles and barrettes involves considerable amount of uncertainty and design parameters must usually be verified by field tests. In this paper, over 50 full-scale load tests on large-diameter bored piles and over 15 large-section of rectangular barrettes in Hong Kong are reviewed and interpreted critically, in particular the degree of mobilisation of side shear resistance using a mobilization rating (MR) factor and a displacement index (DI) for floating bored piles and barrettes and rock-socketed piles, respectively. The author was heavily involved with many of these load tests. The diameter of the bored piles tested ranges from 0.6m to 1.8m and the depth varies from 12m to 75m. Sizes of barrettes critically reviewed include $2.2m{\times}0.6m,\;2.2m{\times}0.8m,\;2.8m{\times}0.8m\;and\;2.8m{\times}1.0m$ (on plan) and the depth varies from 36m and 63m. Based on these field tests, a new failure load criterion for large-diameter bored piles and barrettes is developed and proposed. The side shear resistance of the bored piles and barrettes is quantitatively analyzed with respect to local displacements, standard penetration tests, unconfined compressive strength (UCS) for rock sockets and using the effective stress principle. In addition, the effects of construction including post-grouting, construction time, side scraping and excavation tools on side shear resistance are investigated and reported.

  • PDF

Development of a PVDF sensor for detecting over-load and impact on large-scale mechanical structures (대형 기계 구조물의 과부하 및 충격 측정을 위한 PVDF 센서 개발)

  • Kang, Dong-Bae;Ahn, Jung-Hwan;Kim, Gang-Yeon;Son, Seong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6399-6405
    • /
    • 2014
  • An external overload or impact is an important factor affecting the safety of large-scale structures. The proposal of this paper is the development of a system for detecting overload and impulse using a single PVDF film sensor. In large-scale structures, the load causes the structure to be deformed and the impulse generates vibration on the structure. Generally, low frequency deformation or bending of a structure is measured with a strain gauge and the high frequency vibration is detected by an accelerometer. On the other hand, a single sensor that can detect both deformation and vibration has not been developed. In this study, the development of a detection system integrated with a polyvinylidene fluoride (PVDF) film sensor, amplifier, and software was attempted to monitor deformation and impact through a single sensor. The system was verified by the possibility of detecting overload and impulse, and the two filtered signals of the PVDF were compared with a conventional strain gauge and an accelerometer.

A Study on the Performance Analysis of the DOCSIS 1.1 Protocol for Digital CATV Broadcasting (디지털 유선방송을 위한 DOCSIS 1.1 프로토콜의 성능분석에 관한 연구)

  • Kim Soo-Hee;Sohn Won;Kim Young-Soo;Hong Een-Kee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11A
    • /
    • pp.1253-1262
    • /
    • 2004
  • The Data Over Cable System Interface Specification (DOCSIS) protocol enables the delivery of Internet Protocol(IP) traffic over Cable TV networks with significantly higher data rates. In this paper, we assessed the performance of the DOCSIS protocol using the OPNET. The simulation can be used to predict the upstream system throughput, mean access delay and channel utilization on varying packet size and transmission stream and wid/without concatenation, and it has shown that maximum system throughput is 4.6 Mbps for channel capacity of 5.12 Mbps and packet size of 1500 bytes. The mean access delay varies depending on the offered load, and it is assumed that the offered load does not exceed the capacity of the channel. Excess offered load causes service starvation according to the assigned priority.

A Study of Over Voltage Ground Relay Operation Status at Opening of No-load Charged Cable (무부하 충전케이블 개방시 잔류전압에의한 과전압계전기 동작현상 연구)

  • Kim, Yeong-Han;Choi, Jong-Hyuck;Yoon, Ki-Seob
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.185-187
    • /
    • 2000
  • Fault current is flowed into 154/23kV M. Tr when line-to-ground fault occurs in power system. NGR(Neutral Grounded Reactor) is set up in order to prevent M.Tr fault by limiting magnitude of fault currents. Here, disconnection of NGR causes voltage increase by L-C resonance and line-to-ground fault in an unearthed system results in voltage increase at healthy phases. So Over Voltage Ground Relay(OVGR) is used for tripping M.Tr. Also, buses at second phases of M.Trs are all connected with section circuit breakers closed for the purpose of parallel operation and load shedding. In case of speciality buses are comprised of power cable in part for GIS connection. When no-load charged cable or bus is open by a section CB, unbalanced voltage charged on the bus is induced. Also discrepant opening time for circuit breakers on different phases gives rise to unbalanced zero sequence voltage. It was observed that this zero sequence voltage detected in the 22.9kV P.T (Potential Transformer for bus) mal-operated 59GT and tripped M.Tr. The zero sequence voltage of which vanishing time is longer than relay operating time came out by EMTDC simulation. Also, it was shown that the voltage waves of actual test are similar to those of simulation. On the basis of above results, R-C circuit complement on the relay without any effect on a power system made operating time of the relay longer than vanishing time of distorted waves. Consequently, operating time of the relay was delayed and magnitude of distorted waves was decreased by increasing time constant of the relay.

  • PDF

Effects of Pilot Injection Quantity on the Combustion and Emissions Characteristics in a Diesel Engine using Biodiesel-CNG Dual Fuel (바이오디젤-CNG 혼소엔진에서 파일럿 분사량이 연소 및 배기 특성에 미치는 영향)

  • Ryu, Kyunghyun
    • Journal of ILASS-Korea
    • /
    • v.21 no.2
    • /
    • pp.95-103
    • /
    • 2016
  • The effect of pilot injection quantity on the combustion and emissions characteristics of a compression ignition engine with a biodiesel-compressed natural gas (CNG) dual fuel combustion (DFC) system is studied in this work. Biodiesel is used as a pilot injection fuel to ignite the main fuel, CNG of DFC. The pilot injection quantity is controlled to investigate the characteristics of combustion and exhaust emissions in a single cylinder diesel engine. The injection pressure and injection timing of pilot fuel are maintained at approximately 120 MPa and BTDC 17 crank angle, respectively. Results show that the indicated mean effective pressure (IMEP) of biodiesel-CNG DFC mode is similar to that of diesel-CNG DFC mode at all load conditions. Combustion stability of biodiesel-CNG DFC mode decreased with increase of engine load, but no notable trend of cycle-to-cycle variations with increase of pilot injection quantity is discovered. The combustion of biodiesel-CNG begins at a retarded crank angle compared to that of diesel-CNG at low load, but it is advanced at high loads. Smoke and NOx of biodiesel-CNG are simultaneously increased with the increase of pilot fuel quantity. Compared to the diesel-CNG DFC, however, smoke and NOx emissions are slightly reduced over all operating conditions. Biodiesel-CNG DFC yields higher $CO_2$ emissions compared to diesel-CNG DFC over all engine conditions. CO and HC emissions for biodiesel-CNG DFC is decreased with the increase of pilot injection quantity.

Practical Use of Vegetated Porous Pavement for the Construction of Grass Parking Lot (잔디주차장 시공을 위한 잔디블록 활용방안)

  • Han, Seung-Ho;Kang, Jin-Hyoung;Choi, Joon-Soo;Yang, Geun-Mo;Yoon, Yong-Han;Ku, Tae-Ik;Kim, Won-Tae
    • Journal of Environmental Science International
    • /
    • v.18 no.9
    • /
    • pp.1011-1015
    • /
    • 2009
  • The vegetated porous pavement can be installed as an alternative way to replace the traditional pavement, which contributes less to the water circulation system in the urban area. This study aims to an investigation based on the shadow and pressure of the vehicle system, where the turfgrass get grown and the green block get constructed on the grassy parking lot. This study might achieve these conclusions, in the case of use 'green block' makes grass parking lot, plant a kind of 'zenith' and takes sod thickness 40 mm are more efficient for turfgrass growth in the early times. In the case of parking over 8 hours in a day, after 5 weeks turfgrass growth would come into reduce. So over 4 hours parking and after 9 weeks, we need consider to setting up green block in grassy parking lot. The grassy ground would get pressured by the vehicles' load and it would bring into some damage due to the load after 3 weeks. So we should put the grass's growth root point under the designed a top of 'green block' level. When the vehicle amounts and parking density is in a low level, it could be an environmentally friendly product.