• Title/Summary/Keyword: Over Load

Search Result 2,146, Processing Time 0.023 seconds

A forging die design to improve the flower shape of flange bolt (플랜지 볼트의 플라워 형상 결함 개선을 위한 단조 금형설계)

  • Kim, Kwan-Woo;Lee, Geun-Tae;Cho, Hae-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.314-319
    • /
    • 2016
  • Flange bolt has a circular flange under the head that acts like a washer to distribute the clamping load over a large area. Flange bolt has usually been manufactured by cold forging. Flower shape defect occurs in the flange forging stage. This defect causes lack of dimensional accuracy and low quality. So it is needed to improve these forging defects. In this study, die design method for flower shape defect of flange bolt was suggested. In order to improve flower shape defect, inner diameter of the addition die in conventional forging process was modified. The forging process with applied modified die was simulated by commercial FEM code DEFORM-3D. The simulated results for modified die were confirmed by experimental trials with the same condition.

Characteristic of Cabin Temperature According to Thermal Load Condition of Heat Pump for Electric Vehicle (전기자동차용 히트펌프의 열 부하 조건에 따른 캐빈온도 특성)

  • Park, Ji Soo;Han, Jae Young;Kim, Sung-Soo;Yu, Sang Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.2
    • /
    • pp.85-91
    • /
    • 2016
  • The Positive Temperature Coefficient (PTC) is used for cabin air heating of a battery electric vehicle, which is different from conventional vehicles. Since the PTC heater consumes a large quantity of power in a parasitic manner, many valuable studies have been reported in the field of alternative heat pumps. In this study, a model for an R134a heat pump taking into account the thermal environment of the cabin was developed for a MATLAB/SIMULINK(R) platform. Component and cabin models are validated with reference values. Results show that the heat pump is more competitive for parasitic power consumption over all ambient temperature conditions. Additionally, the method of waste heat recovery to overcome disadvantages when temperatures are below zero is applied to efficiently operate the heat pump.

Isothermal Characteristics of a Rectangular Parallelepiped Sodium Heat Pipe

  • Boo Joon Hong;Park Soo Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.1044-1051
    • /
    • 2005
  • The isothermal characteristics of a rectangular parallelepiped sodium heat pipe were inves­tigated for high-temperature applications. The heat pipes was made of stainless steel of which the dimension was $140\;m\;(L)\;{\times}\;95m\;(W)\;{\times}\;46 m\;(H)$ and the thickness of the container was 5 mm. Both inner surfaces of evaporator and condenser were covered with screen meshes to help spread the liquid state working fluid. To provide additional path for the working fluid, a lattice structure covered with screen mesh wick was inserted in the heat pipe. The bottom surface of the heat pipe was heated by an electric heater and the top surface was cooled by circulating coolant. The concern in this study was to enhance the temperature uniformity at the bottom surface of the heat pipe while an uneven heat source up to 900 W was in contact. The temperature distribution over the bottom surface was monitored at more than twenty six locations. It was found that the operating performance of the sodium heat pipe was critically affected by the inner wall temperature of the condenser region where the working fluid may be changed to a solid phase unless the temperature was higher than its melting point. The maximum temperature difference across the bottom surface was observed to be $114^{\circ}C$ for 850 W thermal load and $100^{\circ}C$ coolant inlet temperature. The effects of fill charge ratio, coolant inlet temperature and operating temperature on thermal performance of heat pipe were analyzed and discussed.

Study on the Performance of a Centrifugal Compressor Using Fluid-Structure Interaction Method (유체-구조 연성해석을 이용한 원심압축기 운전익단간극과 성능 예측)

  • Lee, Horim;Kim, Changhee;Yang, Jangsik;Son, Changmin;Hwang, Yoonjei;Jeong, Jinhee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.357-363
    • /
    • 2016
  • In this study, we perform a series of aero-thermo-mechanical analyses to predict the running-tip clearance and the effects of impeller deformation on the performance using a centrifugal compressor. During operation, the impeller deformation due to a combination of the centrifugal force, aerodynamic pressure and the thermal load results in a non-uniform tip clearance profile. For the prediction, we employ the one-way fluid-structure interaction (FSI) method using CFX 14.5 and ANSYS. The predicted running tip clearance shows a non-uniform profile over the entire flow passage. In particular, a significant reduction of the tip clearance height occurred at the leading and trailing edges of the impeller. Because of the reduction of the tip clearance, the tip leakage flow decreased by 19.4%. In addition, the polytrophic efficiency under operating conditions increased by 0.72%. These findings confirm that the prediction of the running tip clearance and its impact on compressor performance is an important area that requires further investigation.

The Relationship Analysis between Job Stress and Turnover Intention of School Foodservice Employees (학교급식 조리종사자의 직무스트레스와 이직의도 간의 관계 분석)

  • Na, Eun-Jeong;Kim, Hyun-Ah;Jung, Hyun-Young
    • Korean journal of food and cookery science
    • /
    • v.25 no.5
    • /
    • pp.575-585
    • /
    • 2009
  • This study was conducted to identify the job stress factors of school foodservice employees and to examine the relationship between job stress and turnover intention through path analysis. Data was collected using a survey of 432 school foodservice employees in elementary and secondary schools in Masan, Kyungsangnam-do. All of the participants were female, and 165(52.9%) were over the age of 45' Additionally, 310(99.4%) of the respondents were married, while 287(92.0%) had less than a high school level of education. Furthermore, 271(86.9%) of the respondents were cooks. Overall, 107(34.3%) of the respondents had worked in the food industry for less than $5{\sim}10$ years. In addition, 208 (66.7%) respondents answered that they had 'never' changed jobs. Among job characteristics that causes job stress, job posture was the primary stress factor, followed by heavy work load and job condition. Job stress was found to be significantly correlated with turnover intention. Additionally, job position was the only moderating variable that was found to be correlated with job characteristics and job stress. Finally, the moderating variables influencing the effects of job stress on turnover intention were identified as performance confidence, job career, and job position. The results of this study will be useful for future studies conducted to evaluate the development of job environments and performance to minimize turnover and job inefficiency as a result of job stress.

Reduced wavelet component energy-based approach for damage detection of jacket type offshore platform

  • Shahverdi, Sajad;Lotfollahi-Yaghin, Mohammad Ali;Asgarian, Behrouz
    • Smart Structures and Systems
    • /
    • v.11 no.6
    • /
    • pp.589-604
    • /
    • 2013
  • Identification of damage has become an evolving area of research over the last few decades with increasing the need of online health monitoring of the large structures. The visual damage detection can be impractical, expensive and ineffective in case of large structures, e.g., offshore platforms, offshore pipelines, multi-storied buildings and bridges. Damage in a system causes a change in the dynamic properties of the system. The structural damage is typically a local phenomenon, which tends to be captured by higher frequency signals. Most of vibration-based damage detection methods require modal properties that are obtained from measured signals through the system identification techniques. However, the modal properties such as natural frequencies and mode shapes are not such good sensitive indication of structural damage. Identification of damaged jacket type offshore platform members, based on wavelet packet transform is presented in this paper. The jacket platform is excited by simple wave load. Response of actual jacket needs to be measured. Dynamic signals are measured by finite element analysis result. It is assumed that this is actual response of the platform measured in the field. The dynamic signals first decomposed into wavelet packet components. Then eliminating some of the component signals (eliminate approximation component of wavelet packet decomposition), component energies of remained signal (detail components) are calculated and used for damage assessment. This method is called Detail Signal Energy Rate Index (DSERI). The results show that reduced wavelet packet component energies are good candidate indices which are sensitive to structural damage. These component energies can be used for damage assessment including identifying damage occurrence and are applicable for finding damages' location.

Long-term monitoring of ground anchor tensile forces by FBG sensors embedded tendon

  • Sung, Hyun-Jong;Do, Tan Manh;Kim, Jae-Min;Kim, Young-Sang
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.269-277
    • /
    • 2017
  • Recently, there has been significant interest in structural health monitoring for civil engineering applications. In this research, a specially designed tendon, proposed by embedding FBG sensors into the center king cable of a 7-wire strand tendon, was applied for long-term health monitoring of tensile forces on a ground anchor. To make temperature independent sensors, the effective temperature compensation of FBG sensors must be considered. The temperature sensitivity coefficient ${\beta}^{\prime}$ of the FBG sensors embedded tendon was successfully determined to be $2.0{\times}10^{-5}^{\circ}C^{-1}$ through calibrated tests in both a model rock body and a laboratory heat chamber. Furthermore, the obtained result for ${\beta}^{\prime}$ was formally verified through the ground temperature measurement test, expectedly. As a result, the ground temperature measured by a thermometer showed good agreement compared to that measured by the proposed FBG sensor, which was calibrated considering to the temperature sensitivity coefficient ${\beta}^{\prime}$. Finally, four prototype ground anchors including two tension ground anchors and two compression ground anchors made by replacing a tendon with the proposed smart tendon were installed into an actual slope at the Yeosu site. Tensile forces, after temperature compensation was taken into account using the verified temperature sensitivity coefficient ${\beta}^{\prime}$ and ground temperature obtained from the Korean Meteorological Administration (KMA) have been monitored for over one year, and the results were very consistent to those measured from the load cell, interestingly.

Session Management and Control Architecture for N-Screen Services (N-스크린 서비스를 위한 세션 제어 및 관리 구조)

  • Kim, Jae-Woo;Ullah, Farman;Sarwar, Ghulam;Lee, Hyun-Woo;Lee, Sung-Chang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.15-23
    • /
    • 2013
  • In this paper, we propose a session management and control architecture for N-Screen services, which enable users to change devices and transfer contents among user's devices during service by session transfer and split. In N-Screen services, users may have multiple devices with different attribute such as screen resolution, CPU capability and access network interfaces. Also, since users may change devices during service, or one user may use multiple stream, N-Screen services need to enable the user to share and transfer contents across N-Screen devices. We introduce the management and control servers to provide session split over user multiple devices and session continuity while changing device. Furthermore, the proposed architecture provides the device capabilities aware session continuity. In addition, the proposed scheme minimizes the session transfer delay and content server processing load. We present results that show the effectiveness and usefulness of proposed architecture.

A Study on the Development and Application of GIS-based Stream Water Quality Management System (GIS기반의 하천수질관리시스템 구축 및 활용에 관한 연구)

  • 최연웅;성동권;전형섭;조기성
    • Spatial Information Research
    • /
    • v.10 no.2
    • /
    • pp.289-299
    • /
    • 2002
  • Recently, as the social interest about environmental problems is increased and the importance is highlighted, the related information and the demand of information are increased. and, the Total Pollution System will be executed soon. Therefore, the information management system which can manage and analysis related information efficiently and systematically become required. Especially, the development and application of GIS which can effectively manage and analyze information using spatial data have been processing by government, private institute, and related academic institute of all over the world. also their potentiality of application have been recognizing. The main purpose of this study is to develop the stream water quality management system which can simulate future water quality using water quality model(QUAL2E) and be integrated the whole step from calculating pollutant load divided by administrative district and watershed to displaying the result of modeling visually.

  • PDF

Measurement of Channel Impedance Characteristics for Indoor Power Line Communications (옥내 전력선 통신 채널 임피던스 특성 측정)

  • Heo Yoon-Seok;Kim Chul;Hong Bong-Hwa;Lee Dae-Young;Jun Kye-Suk
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.11
    • /
    • pp.79-86
    • /
    • 2005
  • This paper describe a method for measuring line impedance as a function of frequency for an energized powerline in normal operation. A small sinusoidal signal of a powerline communication utility frequency $30khz\~1Mhz$ band is continuously injected into the line, and a implemented impedance analyzer calculates the indoor powerline channel impedance from the measured magnitude and phase of resulting voltage and current. The impedance measurement is executed over a range of frequencies to produce a wideband impedance versus frequency characteristic. Implemented impedance analyzer can analysis powerline communication environments measuring line impedance due to load caused in indoor. And measured analysis information through the database can use to evaluate performance of modem and to decide test environment standard.