• Title/Summary/Keyword: Output response

Search Result 1,402, Processing Time 0.025 seconds

Nutrient Digestibilities and Fecal Characteristics of Diets Including Brown Rice for Miniature Schnauzer (Miniature Schnauzer에 있어서 현미 급여와 영양소 소화율 및 배설 분 특성)

  • Kim, Kyoung-Hoon;Chang, Ju-Song;Oh, Young-Kyoon
    • Journal of Animal Science and Technology
    • /
    • v.53 no.5
    • /
    • pp.429-434
    • /
    • 2011
  • The objectives of this research were to determine the effects of brown rice (BR) on food intake, digestion, energy value, and fecal characteristics. Three replacement levels which BR replaced 0, 15 and 30% of wheat flour were tested. Six female Miniature Schnauzer (8~9 month age, initial mean body weight 5.0 ${\pm}$ 0.3 kg) were assigned to treatments in replicated $3{\times}3$ Latin square design. Total tract digestibilities of DM, OM, acid hydrolyzed fat and gross energy except CP increased linearly (P<0.01), and observed digestible energy and metabolizable energy values also increased linearly (P=0.001 and P=0.006, respectively) with increasing BR replacement level. Wet and dry fecal output decreased linearly (P<0.001, P=0.004) with increasing BR inclusion to the diets and BR 30% treatment reduced wet fecal output up to 21% of that of control. Quadratic (P<0.01) effects was observed in fecal score for dog fed BR and fecal ammonia concentration tended to increase linearly (P=0.07) in response to increasing BR replacement level. It seems that the increase in fecal ammonia concentration may be partially related to the decrease in shortchain fatty acid concentration (P=0.001). This study clearly demonstrates that BR improves nutrients digestibility and fecal characteristics of dog.

A Study on the Detection of the Rain Using Open-Ended Coaxial Cavity Resonator (한쪽 면이 열린 동축 공동 공진기를 이용한 빗물 감지에 관한 연구)

  • Lee, Yun-Min;Kim, Jin-Kuk;Hur, Jung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.9
    • /
    • pp.944-950
    • /
    • 2013
  • This paper is a study of a rain sensor using an open-ended coaxial cavity resonator which senses the amount of rain drops linearly. It shows that it will be used as a sensor to sense the amount of rain dropped on the windshield of an automobile based on the principle of varied resonant frequency and the loss according to the amount and characteristics of an dielectric lied on the open side of a resonator. The input and output ports are built in the both sides of the resonator and the input and output coupling probes are formed like 'ㄱ' shape. The response of rain drops were simulated by the radius of inner conductor of 2 mm, 5 mm, and 10 mm respectively and it showed that the raindrop was sensed most linearly and sensitively when the radius of inner conductor is 5 mm, We have measured that the resonant frequency have varied from 3.55 GHz to 3 GHz and the Q value have varied from 42.38 to 24.3 according to the variation of rain drop amount on the fabricated resonator. Therefore, it shows that the designed resonator can be applied as a rain sensor that measures the amount of rain drops linearly by using the resonant frequency as a measurement parameter.

Intelligent Tuning of the Two Degrees-of-Freedom Proportional-Integral-Derivative Controller On the Distributed Control System for Steam Temperature Control of Thermal Power Plant

  • Dong Hwa Kim;Won Pyo Hong;Seung Hack Lee
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.78-91
    • /
    • 2002
  • In the thermal power plant, there are six manipulated variables: main steam flow, feedwater flow, fuel flow, air flow, spray flow, and gas recirculation flow. There are five controlled variables: generator output, main steam pressure, main steam temperature, exhaust gas density, and reheater steam temperature. Therefore, the thermal power plant control system is a multinput and output system. In the control system, the main steam temperature is typically regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. However, strict control of the steam temperature must be maintained to avoid thermal stress. Maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature versus changes in fuel flow rate, difficulty of control of the main steam temperature control and the reheater steam temperature control system owing to the dynamic response characteristics of changes in steam temperature and the reheater steam temperature, and the fluctuation of inner fluid water and steam flow rates during the load-following operation. Up to the present time, the Proportional-Integral-Derivative Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on the characteristic comparison of the PID controller and the modified 2-DOF PID Controller (Two-Degrees-Freedom Proportional-Integral-Derivative) on the DCS (Distributed Control System). The method is to design an optimal controller that can be operated on the thermal generating plant in Seoul, Korea. The modified 2-DOF PID controller is designed to enable parameters to fit into the thermal plant during disturbances. To attain an optimal control method, transfer function and operating data from start-up, running, and stop procedures of the thermal plant have been acquired. Through this research, the stable range of a 2-DOF parameter for only this system could be found for the start-up procedure and this parameter could be used for the tuning problem. Also, this paper addressed whether an intelligent tuning method based on immune network algorithms can be used effectively in tuning these controllers.

  • PDF

The Remote Control of a Flyback Converter using an Inexpensive Microcontroller (저가형 마이크로 콘트롤러를 이용한 Flyback 컨버터의 원격제어)

  • 김윤서;양오
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.6
    • /
    • pp.67-74
    • /
    • 2004
  • Differently from an existing analog control, because the digital control includes microprocessor basically, the digital control is enable to monitor internal parameters of DC-DC converter and to control output voltage remotely by communicating with a Windows based PC. These things are impossible in an analog control and there are more advantages in a digital control than an analog control. In this paper, with the advantages mentioned above, the feasibility of digital controlled DC-DC converter in low price is proposed. In order to implement these functions, it is used the inexpensive H8/3672 made by Renesas that has built in AD converters and PWM logic generators. The proposed digital controller is applied to a flyback converter that is designed to output DC 5[V] from DC 20∼30[V] and is remotely controlled to make variable outputs from DC 0[V] to 5[V] above in PC. The PWM controller adopts the PD controller in PID. In the last, the response characteristics of a step reference voltage and in a steady state are experimented to verify the feasibility and the usefulness of the proposed flyback converter that is implemented inexpensively.

The Analysis of Liquefaction Evaluation in Ground Using Artificial Neural Network (인공신경망을 이용한 지반의 액상화 가능성 판별)

  • Lee, Song;Park, Hyung-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.37-42
    • /
    • 2002
  • Artificial neural networks are efficient computing techniques that are widely used to solve complex problems in many fields. In this paper a liquefaction potential was estimated by using a back propagation neural network model applicated to cyclic triaxial test data, soil parameters and site investigation data. Training and testing of the network were based on a database of 43 cyclic triaxial test data from 00 sites. The neural networks are trained by modifying the weights of the neurons in response to the errors between the actual output values and the target output value. Training was done iteratively until the average sum squared errors over all the training patterns were minimized. This generally occurred after about 15,000 cycles of training. The accuracy from 72% to 98% was shown for the model equipped with two hidden layers and ten input variables. Important effective input variables have been identified as the NOC,$D_10$ and (N$_1$)$_60$. The study showed that the neural network model predicted a CSR(Cyclic shear stress Ratio) of silty-sand reasonably well. Analyzed results indicate that the neural-network model is more reliable than simplified method using N value of SPT.

Speed Control for Electric Motorcycle Using Fuzzy Controller (퍼지 제어기를 이용한 전기 이륜차의 속도 제어)

  • Ban, Dong-Hoon;Park, Jong-Oh;Lim, Young-Do
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.361-366
    • /
    • 2012
  • This paper presents speed control of an electric motorcycle using a fuzzy controller. The electric motorcycle required to meet not only fast throttle response but also stability, when it is on a cruise. However, a 1.5KW (50cc) electric motorcycles selling in the current market are difficult to cruise under the following conditions which are occupant's weight, load weight, wind resistance and road conditions (dirt roads, asphalt road). Because of these reasons, the rapid speed changing occurs in uphill and downhill road. To solve these problems, The input value for Improved fuzzy controller use the speed error and error variance. The output value for improved fuzzy controller uses Q-axis of the motor controlled variable. The D-axis of the motor output for improved fuzzy control uses D-axis controlled variable in proportional to Q-axis controlled variable. Improved fuzzy controller drives the electric motorcycle equipped with IPMSM. The control subject used in this paper is a 1.5KW electric motorcycle equipped with improved fuzzy controller that was used to control the motor speed. To control IPMSM Type of motor torque, D, Q-axis current controller was used. The Fuzzy controller using the proposed algorithm is demonstrated by experimental hardware simulator.

Diagnosis of Submerged Fixed Bioreactor using Radioisotope Tracer (방사성동위원소 추적자를 이용한 침적형 고정 미생물 반응조 진단)

  • Jung, Sunghee;Jin, Joonha;Lee, Myunjoo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1149-1158
    • /
    • 2000
  • A radioisotope tracer experiment was carried out in the submerged fixed bioreactor of a dye wastewater treatment facility to evaluate the flow behaviors in the 6 compartments of the reactor and to find any possible factors which may affect to the efficiency of the process. Approximately 20mCi of $^{131}I$ was injected into the system as a tracer and 8 radiation detectors were placed in the 6 compartments and at the inlet and the outlet of the system to measure the change of the tracer concentration with time. Using the Perfect Mixers in Series Model the measured data were analyzed to calculate the mean residence time and the characteristic parameters of the flow in the system. The mean residence time of the system was calculated as 17 hours which is 76% of the designed MRT(22.3hr). Among the 6 compartments, the first compartment doesn't show the characteristic of perfect mixer, whereas, the other 5 compartments are working as perfect mixers. The output response of the first compartment is fit well with the simulated output of a model which consists of a perfect mixer with an exchange volume. It indicates that a quarter of the tank volume is working as a dead volume or an exchange volume. From the measured residence time distributions in each compartment, the appropriate sampling times after the change of operational condition of the electron beam accelerator were evaluated.

  • PDF

The Analysis of Economic Impact for Information Security Industry using Inter-Industry Analysis (산업연관분석을 이용한 정보보호 산업의 경제 파급효과 분석)

  • Jeong, Eun-Hee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.72-80
    • /
    • 2020
  • The information security industry is increasing in importance and market size due to the development of the fourth industry such as artificial intelligence, IoT and etc. This paper was analyzed the impact of the increasing information security industry on the domestic economy by using the Input-Output table. It was classified industrial sectors into information security products and information security services industries, and then reclassified the Input-Output table into 35 industries. And it was estimated the production inducement coefficient, the value-added inducement coefficient, employment inducement coefficient, and etc. The production inducement coefficients of the information security product and service industry are each 1.571, 1.802, and the value-added inducement coefficients of them are each 0.632, 0.997, and the employment inducement coefficients of them are each 2.494, 7.361. Only the value-added inducement coefficient of the information security service industry is slightly higher than the total industry, and the remaining inducement coefficients are all lower than the total industry. In addition, the information security product industry has no the forward and backward linkage effect, and the information security service industry has no the backward linkage effect. But it has the forward linkage effect. As a result of analyzing the economic ripple effect of the information security industry, the production inducement amounted to 359.9 trillion won, value-added inducement amounted to 164.8 trillion won, and employment inducement amounted to 803 thousand people.

A Comparative Study on Approximate Models and Sensitivity Analysis of Active Type DSF for Offshore Plant Float-over Installation Using Orthogonal Array Experiment (직교배열실험을 이용한 해양플랜트 플로트오버 설치 작업용 능동형 DSF의 민감도해석과 근사모델 비교연구)

  • Kim, Hun-Gwan;Song, Chang Yong
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.3
    • /
    • pp.187-196
    • /
    • 2021
  • The paper deals with comparative study for characteristics of approximation of design space according to various approximate models and sensitivity analysis using orthogonal array experiments in structure design of active type DSF which was developed for float-over installation of offshore plant. This study aims to propose the orthogonal array experiments based design methodology which is able to efficiently explore an optimum design case and to generate the accurate approximate model. Thickness sizes of main structure member were applied to the design factors, and output responses were considered structure weight and strength performances. Quantitative effects on the output responses for each design factor were evaluated using the orthogonal array experiment. Best design case was also identified to improve the structure design with weight minimization. From the orthogonal array experiment results, various approximate models such as response surface model, Kriging model, Chebyshev orthogonal polynomial model, and radial basis function based neural network model were generated. The experiment results from orthogonal array method were validated by the approximate modeling results. It was found that the radial basis function based neural network model among the approximate models was able to approximate the design space of the active type DSF with the highest accuracy.

Influence of Heat Treatment Conditions on Temperature Control Parameter ((t1) for Shape Memory Alloy (SMA) Actuator in Nucleoplasty (수핵성형술용 형상기억합금(SMA) 액추에이터 와이어의 열처리 조건 변화가 온도제어 파라미터(t1)에 미치는 영향)

  • Oh, Dong-Joon;Kim, Cheol-Woong;Yang, Young-Gyu;Kim, Tae-Young;Kim, Jay-Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.619-628
    • /
    • 2010
  • Shape Memory Alloy (SMA) has recently received attention in developing implantable surgical equipments and it is expected to lead the future medical device market by adequately imitating surgeons' flexible and delicate hand movement. However, SMA actuators have not been used widely because of their nonlinear behavior called hysteresis, which makes their control difficult. Hence, we propose a parameter, $t_1$, which is necessary for temperature control, by analyzing the open-loop step response between current and temperature and by comparing it with the values of linear differential equations. $t_1$ is a pole of the transfer function in the invariant linear model in which the input and output are current and temperature, respectively; hence, $t_1$ is found to be related to the state variable used for temperature control. When considering the parameter under heat treatment conditions, $T_{max}$ was found to assume the lowest value, and $t_1$ was irrelevant to the heat treatment.