• Title/Summary/Keyword: Output energy

Search Result 2,824, Processing Time 0.033 seconds

An Experimental Study on the Performance and Characteristics of Emission for an S.I. Engine with Methanol-Reformulated Fuel (메탄올 개질 연료를 이용한 S.I. 엔진의 성능 및 배기 배출물 특성에 관한 연구)

  • Jang, Yeong-Jun;Choe, Seung-Hwan;Ha, Cheol-Ho;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.9
    • /
    • pp.1193-1200
    • /
    • 2001
  • There are many regulation test methods to be related with engine emissions such as CVS-75, D-13, ECE-15 modes and so on. Most of these modes are consisted of lots of transient conditions that have rapid acceleration, deceleration and cranking modes. In this experimental research, the engine characteristics of cranking, accelerating and power output in a S.I. engine were studied to compare with neat gasoline and alternative fuels of M30 (methanol 30%, aromatic series 32%, non-aromatic 38%) and M50 (methanol 50%, aromatic 30%, non-aromatic 20%) for performance and exhaust emissions. The results show that reformulated methanol fuels are better emissions reduction of 15.7% over than that of neat gasoline fuel especially in HC and CO emissions at cranking mode. And the accelerating performances coincide with the results of distillation curve. CO concentration for M50 fuel is varied in a just little for the condition of slow acceleration. At wide-open throttle condition, brake specific energy consumption of reformulated fuels is increased and thermal efficiency is some what lower than that of gasoline fuel.

A study on characteristics of each operation mode for hybrid electric propulsion ship by operation circumstances (선박 운전 환경에 따른 하이브리드 전기추진선박의 운전모드별 출력 특성에 관한 연구)

  • Kim, Jong-Su;Jeon, Hyeon-Min;Kim, Deok-Ki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.245-250
    • /
    • 2017
  • Worldwide environmental regulations have been enhanced for emission reduction of greenhouse gases and air pollutants; accordingly, some measures were prepared. Furthermore, the need for effective and reasonable energy-saving methods is growing in accordance with that for environmental pollution minimization. In the case of marine engineering, techniques for the development of eco-friendly vessels have been actively studied, including reduction of exhaust gas emissions, development of alternative fuel, and development of a new propulsion system. In this study, we presented the basic concepts and analyzed the speed, current, voltage, and output power characteristics of each operating mode, i.e., operating mode of battery, generator, and full power.

Effect of ultrasonic waves on anti-freezing for plate-type heat exchanger (평판형 열교환기에서의 제빙억제를 위한 초음파의 영향)

  • Cho, Ki-Ryang;Choi, Kwang-Il;Kim, On;Park, Ki-won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.176-181
    • /
    • 2017
  • This study attempted to examine a method of anti-freezing on a plate-type heat exchanger in a low-temperature environment. Freezing condition was observed after ultrasonic waves were generated. Data were recorded to determine the optimal conditions for freezing. Ethylene glycol, which is commonly used in antifreeze formulations, was used as the brine, and the temperature was varied between -8 and $-16^{\circ}C$. The water for freezing provided by the thickness of 1-3 mm. In addition, experiments were conducted by adjusting the output to identify the changes that occurred due to the incidence of ultrasonic energy. The results of the anti-freezing effect were brine temperature, freezing thickness, and frequency band of ultrasonic waves.

Development of Regenerative Inverter for Electric Railway Using Space Vector PWM (SVPWM을 이용한 전기철도용 회생 인버터 개발)

  • 백병산;정문구;김태완
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.97-104
    • /
    • 2004
  • As a device that returns surplus energy, regenerated from trains to d.c. source, to a.c. system and reuses it, the thyristor Inverter has been widely used. Because the conventional thyristor inverter is a unidirectional phase-controlled device, it Is Impossible to control the power factor of its output. Moreover, harmonics emission is high and it needs to take a additional filter. In this paper, to solve the problems stated above, the inverter, which can control real and reactive power by adopting IGBT modules as switching elements and being controlled by means of space vector PWM, is developed. Considering high economical efficiency and reliability in order to apply to the system for commercial use, the developed inverter is equipped with fully digital control system and low pass filter, and reduces harmonics and has compact size. The detail description about the developed inverter is stated in various respects: design criteria, technical description, power circuits, control techniques, the developed system, test results, etc.

Compression-time Shortening Algorithm on JPEG2000 using Pre-Truncation Method (선자름 방법을 이용한 JPEG2000에서의 부호차 시간 단축 알고리즘)

  • 양낙민;정재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.1C
    • /
    • pp.64-71
    • /
    • 2003
  • In this paper, we proposed an algorithm that shorten coding time maintaining image quality in JPEG2000, which is the standard, of still image compression. This method encodes only the bit plane selected as appropriate truncation point for output bitstream, obtained from estimation of frequency distribution for whole image. Wavelet characterized by multi-resolution has vertical, horizontal, and diagonal frequency components for each resolution. The frequency interrelation addressed above is maintained thorough whole level of resolution and represents the unique frequency characteristics for input image. Thus, using the frequency relation at highest level, we can pick the truncation point for the compression time decrease by estimating code bits at encoding each code block. Also, we reduced the encoding time using simply down sampling instead of low-pass filtering at low-levels which are not encoded in color component of lower energy than luminance component. From the proposed algorithm, we can reduce about 15~36% of encoding time maintaining PSNR 30$\pm$0.5㏈.

Performance and Emission Characteristics of a Diesel Engine Operated with Wood Pyrolysis Oil (목질 열분해유를 사용하는 디젤엔진의 성능 및 배기특성에 관한 연구)

  • Lee, Seok-Hwan;Park, Jun-Hyuk;Choi, Young;Woo, Se-Jong;Kang, Kern-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.102-112
    • /
    • 2012
  • The vast stores of biomass available in the worldwide have the potential to displace significant amounts of fuels that are currently derived from petroleum sources. Fast pyrolysis of biomass is one of possible paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO), also known as the bio crude oil (BCO), have been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of BCO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the BCO. One of the easiest way to adopt BCO to diesel engine without modifications is emulsification of BCO with diesel and bio diesel. In this study, a diesel engine operated with diesel, bio diesel (BD), BCO/diesel, BCO/bio diesel emulsions was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by BCO emulsions were examined. Results showed that stable engine operation was possible with emulsions and engine output power was comparable to diesel and bio diesel operation. However, in case of BCO/diesel emulsion operation, THC & CO emissions were increased due to the increased ignition delay and poor spray atomization and NOx & Soot were decreased due to the water and oxygen in the fuel. Long term validation of adopting BCO in diesel engine is still needed because the oil is acid, with consequent problems of corrosion and clogging especially in the injection system.

Evolutionary Optimization of Pulp Digester Process Using D-optimal DOE and RSM

  • Chu, Young-Hwan;Chonghun Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.395-395
    • /
    • 2000
  • Optimization of existing processes becomes more important than the past as environmental problems and concerns about energy savings stand out. When we can model a process mathematically, we can easily optimize it by using the model as constraints. However, modeling is very difficult for most chemical processes as they include numerous units together with their correlation and we can hardly obtain parameters. Therefore, optimization that is based on the process models is, in turn, hard to perform. Especially, f3r unknown processes, such as bioprocess or microelectronics materials process, optimization using mathematical model (first principle model) is nearly impossible, as we cannot understand the inside mechanism. Consequently, we propose a few optimization method using empirical model evolutionarily instead of mathematical model. In this method, firstly, designing experiments is executed fur removing unecessary experiments. D-optimal DOE is the most developed one among DOEs. It calculates design points so as to minimize the parameters variances of empirical model. Experiments must be performed in order to see the causation between input variables and output variables as only correlation structure can be detected in historical data. And then, using data generated by experiments, empirical model, i.e. response surface is built by PLS or MLR. Now, as process model is constructed, it is used as objective function for optimization. As the optimum point is a local one. above procedures are repeated while moving to a new experiment region fur finding the global optimum point. As a result of application to the pulp digester benchmark model, kappa number that is an indication fur impurity contents decreased to very low value, 3.0394 from 29.7091. From the result, we can see that the proposed methodology has sufficient good performance fur optimization, and is also applicable to real processes.

  • PDF

Multi-wavelength Study of Blazars Using Variability as a Tool

  • Baliyan, Kiran S.;Kaur, Navpreet;Chandra, Sunil;Sameer, Sameer;Ganesh, Shashikiran
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.177-183
    • /
    • 2016
  • Active galactic nuclei (AGN) are too compact to be resolved by any existing optical telescope facility, making it difficult to understand their structure and the emission processes responsible for their huge energy output. However, variability, one of their characteristic properties, provides a tool to probe the inner regions of AGN. Blazars are the best candidates for such a study, and hence a considerable amount of effort is being made to investigate variability in these sources across the electromagnetic spectrum. Here, using the Mt. Abu infrared observatory (MIRO) blazar monitoring program, we present intra-night, inter-night, and long term aspects of the variability in S5 0716+71, 3C66A, and OJ 287. These stars show significant variability on short (a few tens of mins, to a few hours, to a few days) to long term (months to years) timescales. Based on the light travel time argument, the shortest variability timescales (micro-variability) provide upper limits to the size of the emission region. While S5 0716 shows a very high duty cycle of variability (> 80 %), 3C66A shows a much lower intra day variability (IDV) duty cycle (< 20 %). All three show rapid variations within 2.5 to 3.5 hr, which, perhaps, are generated near the vicinity of black holes. Assuming this, estimates of the masses of the black holes are made at ~109, 8×108, and 2.7×109 M for S5 0716+71, 3C66A, and OJ 287, respectively. Multi-wavelength light-curves for the blazar PKS 1510-089 are discussed to infer the emission processes responsible for the recent flaring episodes in this source.

Quality Assurance of Operation of Enhanced Dynamic Wedges in Linac (선형가속기의 동적쐐기(EDW) 작동에 대한 품질보증)

  • Jeong, Dong-Hyeok;Kim, Jhin-Kee;Kang, Jeong-Ku;Son, Kwang-Jae;Lee, Jeong-Ok
    • Journal of radiological science and technology
    • /
    • v.33 no.2
    • /
    • pp.133-141
    • /
    • 2010
  • The evaluation of Varian enhanced dynamic wedges (EDW) were performed in terms of quality assurance in external radiotherapy. The seven (10, 15, 20, 25, 30, 45, 60 deg.) EDW angles were evaluated for 6 and 15 MV x-rays in Varian Linac. The STT (segmented treatment table) for a field were calculated and compared with actual movement of the jaw using Dynalog files in order to evaluate mechanical operation. Two dimensional array detector and an ionization chamber were used to measure dose distributions in phantom from Linac. The mechanical movement of jaw was agreed with its expectation and two dimensional dose distributions including beam profiles were in agreement with RTP data approximately. In comparison with RTP calculations the percentage difference of output dose values for 100 MU irradiation was less than 2.9% and measured wedge factor was less than 2.6%. These results are shown that there is no problem in clinical applications of EDW equipped on this linac.

Development of Synthetic Jet Micro Air Pump (Synthetic Jet 마이크로 에어펌프의 개발)

  • Choi, J.P.;Kim, K.S.;Seo, Y.H.;Ku, B.S.;Jang, J.H.;Kim, B.H.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.594-599
    • /
    • 2008
  • This paper presents a micro air pump based on the synthetic jet to supply reactant at the cathode side for micro fuel cells. The synthetic jet is a zero mass flux device that converts electrical energy into the momentum. The synthetic jet actuation is usually generated by a traditional PZT-driven actuator, which consists of a small cylindrical cavity, orifices and PZT diaphragms. Therefore, it is very important that the design parameters are optimized because of the simple configuration. To design the synthetic jet micro air pump, a numerical analysis has been conducted for flow characteristics with respect to various geometries. From results of numerical analysis, the micro air pump has been fabricated by the PDMS replication process. The most important design factors of the micro air pump in micro fuel cells are the small size and low power consumption. To satisfy the design targets, we used SP4423 micro chip that is high voltage output DC-AC converter to control the PZT. The SP4423 micro chips can operate from $2.2{\sim}6V$ power supply(or battery) and is capable of supplying up to 200V signals. So it is possible to make small size controller and low power consumption under 0.1W. The size of micro air pump was $16{\times}13{\times}3mm^3$ and the performance test was conducted. With a voltage of 3V at 800Hz, the air pump's flow rate was 2.4cc/min and its power consumption was only 0.15W.