• 제목/요약/키워드: Output Uncertainty

검색결과 319건 처리시간 0.033초

Multiple Instance Mamdani Fuzzy Inference

  • Khalifa, Amine B.;Frigui, Hichem
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권4호
    • /
    • pp.217-231
    • /
    • 2015
  • A novel fuzzy learning framework that employs fuzzy inference to solve the problem of Multiple Instance Learning (MIL) is presented. The framework introduces a new class of fuzzy inference systems called Multiple Instance Mamdani Fuzzy Inference Systems (MI-Mamdani). In multiple instance problems, the training data is ambiguously labeled. Instances are grouped into bags, labels of bags are known but not those of individual instances. MIL deals with learning a classifier at the bag level. Over the years, many solutions to this problem have been proposed. However, no MIL formulation employing fuzzy inference exists in the literature. Fuzzy logic is powerful at modeling knowledge uncertainty and measurements imprecision. It is one of the best frameworks to model vagueness. However, in addition to uncertainty and imprecision, there is a third vagueness concept that fuzzy logic does not address quiet well, yet. This vagueness concept is due to the ambiguity that arises when the data have multiple forms of expression, this is the case for multiple instance problems. In this paper, we introduce multiple instance fuzzy logic that enables fuzzy reasoning with bags of instances. Accordingly, a MI-Mamdani that extends the standard Mamdani inference system to compute with multiple instances is introduced. The proposed framework is tested and validated using a synthetic dataset suitable for MIL problems. Additionally, we apply the proposed multiple instance inference to fuse the output of multiple discrimination algorithms for the purpose of landmine detection using Ground Penetrating Radar.

이족 보행 로봇 제어에 대한 새로운 적응 퍼지 접근방법 (A New Adaptive Fuzzy Approach for Control of a Bipedal Robot)

  • 황재필;김은태
    • 전자공학회논문지SC
    • /
    • 제42권5호
    • /
    • pp.13-18
    • /
    • 2005
  • 최근 수 년 동안 이족보행 로봇 제어는 로봇 분야에서 각광을 받는 분야인 한편, 어려운 분야이기도 하다. 본 논문에서는 이족보행 로봇을 위한 적응 퍼지 논리를 이용한 새로운 강인한 제어 방법을 제안한다. 적응 퍼지 논리는 알려지지 않은 불확실성을 제거하기 위한 시스템 추정기로 사용된다. 우선 발바꿈과 불확실성, 외란 등의 영향을 포함한 로봇 모델을 제안한다. 다음, 관절의 속도 측정을 하지 않는 제어기를 설계한다. 퍼지 논리를 튜닝하기 위하여 퍼지 추정 오차 관측기를 시스템에 포함시켰다. 마지막으로 제어방법의 타당성을 보이기 위하여 시뮬레이션 결과를 보여준다.

불확도 요인 분석을 통한 교정 시스템 적합성 평가 및 시험기준 결정 방안 (Calibration System Suitability Evaluation and Test Limits Determination Method through Factor Analysis of Uncertainty)

  • 김홍탁;김부일
    • 한국전자통신학회논문지
    • /
    • 제14권6호
    • /
    • pp.1139-1144
    • /
    • 2019
  • 정밀측정장비의 성능을 진단 및 확인하는 교정 시스템은 교정결과의 신뢰성 확보를 위해 국제규격의 요구조건을 준수함으로 교정결과의 오판정 위험을 최소화하고 있다. 본 논문에서는 교정기관에서 고성능의 장비를 획득 및 운영하기에 불가능한 경우 불확도 요인 분석을 통한 교정 시스템 적합성 평가 방안과 가드밴드 기법을 이용하여 성능기준을 대체하는 최적화된 시험기준 산출모형을 제안한다. 제안된 방법은 교정 시스템의 정량적인 평가기준과 국제규격에서 요구되는 허위수락위험 확률 기준을 충족을 위한 최적화된 시험기준을 제공한다.

Robust Observer Design for an Isolated Power System with Model Uncertainty using H-Norm

  • Goya, Tomonori;Senjyu, Tomonobu;Omine, Eitaro;Yona, Atsushi;Urasaki, Naomitsu;Funabashi, Toshihisa
    • Journal of Power Electronics
    • /
    • 제10권5호
    • /
    • pp.498-504
    • /
    • 2010
  • The output power fluctuations of renewable energy power plants such as wind turbine generators and photovoltaic systems result in frequency deviations and terminal voltage fluctuations. Furthermore, these power fluctuations also affect the turbine shaftings of diesel generators and gas-turbine generators which are the main power generation systems on isolated islands. Therefore, it is important to achieve torsional torque suppression. Since the measurement of torsional torque is technically difficult, and there is an uncertainty in the mechanical constants of the shaft torsional system. This paper presents an estimation system that estimates torsional torque by using a developed $H_{\infty}$ observer. In addition to the above functions, the proposed shaft torque observer incorporates a parameter identification system that aims to improve the estimation accuracy. The simulation results validate the effectiveness of the proposed $H_{\infty}$ observer and the parameter identification.

Application of an Adaptive Autopilot Design and Stability Analysis to an Anti-Ship Missile

  • Han, Kwang-Ho;Sung, Jae-Min;Kim, Byoung-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권1호
    • /
    • pp.78-83
    • /
    • 2011
  • Traditional autopilot design requires an accurate aerodynamic model and relies on a gain schedule to account for system nonlinearities. This paper presents the control architecture applied to a dynamic model inversion at a single flight condition with an on-line neural network (NN) in order to regulate errors caused by approximate inversion. This eliminates the need for an extensive design process and accurate aerodynamic data. The simulation results using a developed full nonlinear 6 degree of freedom model are presented. This paper also presents the stability evaluation for control systems to which NNs were applied. Although feedback can accommodate uncertainty to meet system performance specifications, uncertainty can also affect the stability of the control system. The importance of robustness has long been recognized and stability margins were developed to quantify it. However, the traditional stability margin techniques based on linear control theory can not be applied to control systems upon which a representative non-linear control method, such as NNs, has been applied. This paper presents an alternative stability margin technique for NNs applied to control systems based on the system responses to an inserted gain multiplier or time delay element.

Observer Design for A Class of UncertainState-Delayed Nonlinear Systems

  • Lu Junwei;Feng Chunmei;Xu Shengyuan;Chu Yuming
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권4호
    • /
    • pp.448-455
    • /
    • 2006
  • This paper deals with the observer design problem for a class of state-delayed nonlinear systems with or without time-varying norm-bounded parameter uncertainty. The nonlinearities under consideration are assumed to satisfy the global Lipschitz conditions and appear in both the state and measured output equations. The problem we address is the design of a nonlinear observer such that the resulting error system is globally asymptotically stable. For the case when there is no parameter uncertainty, a sufficient condition for the solvability of this problem is derived in terms of linear matrix inequalities and the explicit formula of a desired observer is given. Based on this, the robust observer design problem for the case when parameter uncertainties appear is considered and the solvability condition is also given. Both of the solvability conditions obtained in this paper are delay-dependent. A numerical example is provided to demonstrate the applicability of the proposed approach.

Investigation of modal identification and modal identifiability of a cable-stayed bridge with Bayesian framework

  • Kuok, Sin-Chi;Yuen, Ka-Veng
    • Smart Structures and Systems
    • /
    • 제17권3호
    • /
    • pp.445-470
    • /
    • 2016
  • In this study, the Bayesian probabilistic framework is investigated for modal identification and modal identifiability based on the field measurements provided in the structural health monitoring benchmark problem of an instrumented cable-stayed bridge named Ting Kau Bridge (TKB). The comprehensive structural health monitoring system on the cable-stayed TKB has been operated for more than ten years and it is recognized as one of the best test-beds with readily available field measurements. The benchmark problem of the cable-stayed bridge is established to stimulate investigations on modal identifiability and the present paper addresses this benchmark problem from the Bayesian prospective. In contrast to deterministic approaches, an appealing feature of the Bayesian approach is that not only the optimal values of the modal parameters can be obtained but also the associated estimation uncertainty can be quantified in the form of probability distribution. The uncertainty quantification provides necessary information to evaluate the reliability of parametric identification results as well as modal identifiability. Herein, the Bayesian spectral density approach is conducted for output-only modal identification and the Bayesian model class selection approach is used to evaluate the significance of different modes in modal identification. Detailed analysis on the modal identification and modal identifiability based on the measurements of the bridge will be presented. Moreover, the advantages and potentials of Bayesian probabilistic framework on structural health monitoring will be discussed.

풍력발전기 주축 및 날개 부하 측정시스템의 보정 및 불확실성 해석 (A Calibration and Uncertainty Analysis on the Load Monitoring System for a Low Speed Shaft and Rotor Blade of a Wind Turbine)

  • 박무열;유능수;남윤수
    • 대한기계학회논문집A
    • /
    • 제30권5호
    • /
    • pp.560-567
    • /
    • 2006
  • The exact load measurements for the mechanical parts of a wind turbine are important step both fur the evaluation of a specific wind turbine design and for a certification process. A common method for a mechanical load measurement is using a strain gauge sensing. Two main problems ought to be answered in order for this method to be applied to the wind turbine project. These are strain gauge calibration and non-contact signal transmission from the strain gauge output to a load monitoring system. This paper suggests reliable solutions fer these two problems. A Bluetooth, a short range wireless data communication technology, is used to solve the second problem. The first one, the strain gauge calibration methodology for a load measurement in a wind turbine application, is fully explained in this paper. Various mechanical loadings for a strain gauge calibration in a wind turbine load measurement are introduced and analyzed. Initial experimental results which are obtained from a 1 kW small size wind turbine are analyzed, and the uncertainty problem in estimating mechanical loads using a calibration matrix is fully covered in this paper.

Robust Stability eEaluation of Multi-loop Control Systems Based on Experimental Data of Frequency Response

  • Chen, Hong;Okuyama, Yoshifumi;Takemori, Fumiaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.360-363
    • /
    • 1995
  • In this paper, we describe the composition of frequency response bands based on experimental data of plants (controlled systems) with uncertainty and nonlinearity, and the robust stability evaluation of feedback control systems. Analysis and design of control systems using the upper and lower bounds of such experimental data would be effective as a practicable method which is not heavily dependent upon mathematical models such as the transfer function. First, we present a method to composite gain characteristic bands of frequency response of cascade connected plants with uncertainty and a recurrent inequality for the composition. Next, evaluation methods of the robust stability of multi-loop control systems obtained through feedback from the output terminals and multi-loop control systems obtained through feedback into the input terminals are described. In actual control systems, experimental data of frequency responses often depends on the amplitude of input. Therefore, we present the evaluation method of the nominal value and the width of the frequency response band in such a case, and finally give numerical examples based on virtual experimental data.

  • PDF

WRF V3.3 모형을 활용한 CESM 기후 모형의 역학적 상세화 (Application of the WRF Model for Dynamical Downscaling of Climate Projections from the Community Earth System Model (CESM))

  • 서지현;심창섭;홍지연;강성대;문난경;황윤섭
    • 대기
    • /
    • 제23권3호
    • /
    • pp.347-356
    • /
    • 2013
  • The climate projection with a high spatial resolution is required for the studies on regional climate changes. The Korea Meteorological Administration (KMA) has provided downscaled RCP (Representative Concentration Pathway) scenarios over Korea with 1 km spatial resolution. If there are additional climate projections produced by dynamically downscale, the quality of impacts and vulnerability assessments of Korea would be improved with uncertainty information. This technical note intends to instruct the methods to downscale the climate projections dynamically from the Community Earth System Model (CESM) to the Weather Research and Forecast (WRF) model. In particular, here we focus on the instruction to utilize CAM2WRF, a sub-program to link output of CESM to initial and boundary condition of WRF at Linux platform. We also provide the example of the dynamically downscaled results over Korean Peninsula with 50 km spatial resolution for August, 2020. This instruction can be helpful to utilize global scale climate scenarios for studying regional climate change over Korean peninsula with further validation and uncertainty/bias analysis.