• Title/Summary/Keyword: Output Ripple Current

Search Result 334, Processing Time 0.019 seconds

Photovoltaic Generation by Parallel Driving of Modified Buck-boost Converter (변형된 승강압 컨버터의 병렬구동에 의한 태양광발전)

  • Lee Hee-Chang;Park Sung-Jun;Park Soo-Sik;Moon Chae-Joo;Lee Man-Hyung;Kim Jong-Dal
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.457-466
    • /
    • 2004
  • In this paper, a modified converter is presented and analyzed to use as a photovoltaic converter. And also a new parallel driving scheme is proposed to increase output power and to reduce the output voltage ripple. The ratio of the output to the input voltage of the modified converter is equal to that of the boost converter. The difference between both converters is the composition of output terminal. Owing to the discrepancy, a working voltage of the output capacitor of the modified converter becomes lower, thus the capacitance value of the capacitor can be smaller than that of the boost converter. The proposed parallel driving is based on the modified converter and a current-mode-control method. It gives a good solution for alleviating the current sharing unbalance problem of conventional parallel operations. It reduces the output voltage ripple by means of increasing the equivalent switching frequency without additional switching losses. The validity of the proposed parallel driving strategy is verified through computer-aided simulations and experimental results.

High Performance Current-Mode DC-DC Boost Converter in BiCMOS Integrated Circuits

  • Lee, Chan-Soo;Kim, Eui-Jin;Gendensuren, Munkhsuld;Kim, Nam-Soo;Na, Kee-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.6
    • /
    • pp.262-266
    • /
    • 2011
  • A simulation study of a current-mode direct current (DC)-DC boost converter is presented in this paper. This converter, with a fully-integrated power module, is implemented by using bipolar complementary metal-oxide semiconductor (BiCMOS) technology. The current-sensing circuit has an op-amp to achieve high accuracy. With the sense metal-oxide semiconductor field-effect transistor (MOSFET) in the current sensor, the sensed inductor current with the internal ramp signal can be used for feedback control. In addition, BiCMOS technology is applied to the converter, for accurate current sensing and low power consumption. The DC-DC converter is designed with a standard 0.35 ${\mu}m$ BiCMOS process. The off-chip inductor-capacitor (LC) filter is operated with an inductance of 1 mH and a capacitance of 12.5 nF. Simulation results show the high performance of the current-sensing circuit and the validity of the BiCMOS converter. The output voltage is found to be 4.1 V with a ripple ratio of 1.5% at the duty ratio of 0.3. The sensing current is measured to be within 1 mA and follows to fit the order of the aspect ratio, between sensing and power FET.

Practical Implementation of an Interleaved Boost Converter for Electric Vehicle Applications

  • Wen, Huiqing;Su, Bin
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1035-1046
    • /
    • 2015
  • This study presents a practical implementation of a multi-mode two-phase interleaved boost converter for fuel cell electric vehicle application. The main operating modes, which include two continuous conducting modes and four discontinuous conducting modes, are discussed. The boundaries and transitions among these modes are analyzed with consideration of the inductor parasitic resistance. The safe operational area is analyzed through a comparison of the different operating modes. The output voltage and power characteristics with open-loop or closed-loop operation are also discussed. Key performance parameters, including the DC voltage gain, input ripple current, output ripple voltage, and switch stresses, are presented and supported by simulation and experimental results.

Analysis, Design and Implementation of a New Chokeless Interleaved ZVS Forward-Flyback Converter

  • Taheri, Meghdad;Milimonfared, Jafar;Namadmalan, Alireza;Bayat, Hasan;Bakhshizadeh, Mohammad Kazem
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.499-506
    • /
    • 2011
  • This paper presents an interleaved active-clamping zero-voltage-switching (ZVS) forward-flyback converter without an output choke. The presented topology has two active-clamping circuits with two separated transformers. Because of the interleaved operation of the converter, the output current ripple will be reduced. The proposed converter can approximately share the total load current between the two secondaries. Therefore, the transformer copper loss and the rectifier diodes conduction loss can be decreased. The output capacitor is made of two series capacitors which reduces the peak reverse voltage of the rectifier diodes. The circuit has no output inductor and few semiconductor elements, such that the adopted circuit has a simpler structure, a lower cost and is suitable for high power density applications. A detailed analysis and the design of this new converter are described. A prototype converter has been implemented and experimental results have been recorded with an ac input voltage of 85-135Vrms, an output voltage of 12V and an output current of 16A.

High Performance Control of IPMSM Drive using Dual PI Controller (Dual PI 제어기를 이용한 IPMSM 드라이브의 고성능 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Kim, Do-Yeon;Jung, Byung-Jin;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.105-110
    • /
    • 2008
  • This Paper proposes Dual-PI controller for high performance control of IPMSM drive. Input of traditional PI control used speed error, but Dual-PI controller used two input speed error, current error and output is output is f-axis current. Dual-PI controller is Possible both speed control and current control because it used speed error and current error Therefore, dual-PI controller can is reduced current ripple. This paper is made analysis performance of algorithm and proposes result.

  • PDF

Effects of Imperfect Sinusoidal Input Currents on the Performance of a Boost PFC Pre-Regulator

  • Cheung, Martin K.H.;Chow, Martin H.L.;Lai, Y.M.;Loo, K.H.
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.689-698
    • /
    • 2012
  • This paper investigates the effects of applying different input current waveshapes on the performance of a continuous-conduction-mode (CCM) power-factor-correction (PFC) boost pre-regulator. It is found that the output voltage ripple of the pre-regulator can be reduced if the input current is modified to include controlled amount of higher order harmonics. This finding allows us to balance the performance of output regulation and the harmonic current emission when coming to the design of the pre-regulator. An experimental PFC boost pre-regulator prototype is constructed to verify the analysis and show the benefit of the pre-regulator operating with input current containing higher order harmonics.

Reducing Current Distortion in Indirect Matrix Converters Operating in Boost Mode under Unbalanced Input Conditions

  • Choi, Dongho;Bak, Yeongsu;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1142-1152
    • /
    • 2019
  • This paper presents a control method for reducing the current distortion in an indirect matrix converter (IMC) operating in boost mode under unbalanced input conditions. IMCs operating in boost mode are useful in distributed generation (DG) systems. They are connected with renewable energy systems (RESs) and the grid to transmit the power generated by the RES. However, under unbalanced voltage conditions of the RES, which is connected with the input stage of the IMC operating in boost mode, the input-output currents are distorted. In particular, the output current distortions cause a ripple of the power, which is transferred to the grid. This aggravates the reliability and stability of the DG system. Therefore, in this paper, a control method using positive/negative sequence voltages and currents is proposed for reducing the current distortion of both side in IMCs operating in boost mode. Simulation and experimental results have been presented to validate effectiveness of the proposed control method.

Input Current/Torque Ripple Compensation of Current Source Induction Motor Drives using Active Power Filters (능동전력필터에 의한 전류형 인버터 구동 유도모터의 입력전류 및 토크맥동 보상)

  • 정영국;조재연;임영철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.158-163
    • /
    • 2001
  • Current Source Inverter(CSI), operated in square wave mode, is more efficient thant the PWM CSI because of increased cost, greater complexity of control algorithm and substantial switching losses, EMI. But, the square wave output current of CSI, rich in low order harmonics produce motor torque ripples. Therefore, in this paper, describes active power filters for compensating square wave input current of current source induction motor. Also, notch filtering as compensation algorithm is employed. To confirm the validity of proposed system, PSIM simulation results are presented and discussed.

  • PDF

LCL Resonant Compensation of Movable ICPT Systems with a Multi-load

  • Hua, Jie;Wang, Hui-Zhen;Zhao, Yao;Zou, Ai-Long
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1654-1663
    • /
    • 2015
  • Compared to LC resonance, LCL resonance has distinct advantages such as a large resonant capability, low voltage and current stresses of the power device, constant voltage or current output characteristics, and fault-tolerance capability. Thus, LCL resonant compensation is employed for a movable Inductive Contactless Power Transfer (ICPT) system with a multi-load in this paper, which achieves constant current output characteristics. Peculiarly, the primary side adopts a much larger compensation inductor than the primary leakage inductor to lower the reactive power, reduce the input current ripple, generate a large current in the primary side, and realize soft-switching. Furthermore, this paper proposes an approximate resonant point for large inductor-ratio LCL resonant compensation through fundamental wave analysis. In addition, the PWM control strategy is used for this system to achieve constant current output characteristics. Finally, an experimental platform is built, whose secondary E-Type coils can ride and move on a primary rail. Simulations and experiments are conducted to verify the effectiveness and accuracy of both the theory and the design method.

Modified Single-Phase SRM Drive for Low Torque Ripple and Power Factor Improvement (저토크리플 및 역률개선을 위한 수정된 단상 SRM 구동시스템)

  • An, Young-Joo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.975-982
    • /
    • 2007
  • The single-phase switched reluctance motor(SRM) drive requires DC source which is generally supplied through a rectifier connected with a commercial source. The rectifier is consist of a diode full bridge and a filter circuit. Usually the filter circuit uses capacitor with large value capacitance to reduce ripple component of DC power. Although the peak torque ripple of SRM is small, the short charge and discharge current of the filter capacitor draws the low power factor and system efficiency. A modified single phase SRM drive system is presented in this paper, which includes drive circuit realizing reduction of torque ripple and improvement of power factor. In the proposed drive circuit, one switching part and diode which can separate the output of AC/DC rectifier from the filter capacitor is added. Also, a upper switch of drive circuit is exchanged a diode in order to reduce power switching device. Therefore the number of power switch device is not changed, two diodes are only added in the SRM drive. To verify the proposed system, some simulation and experimental results are presented.