• 제목/요약/키워드: Outlet water temperature

검색결과 225건 처리시간 0.024초

온수추출과정의 열유동 특성에 관한 연구 (A Study on Heat Flow Characteristics during Hot Water Extraction Process)

  • 장영근;박정원
    • 설비공학논문집
    • /
    • 제13권7호
    • /
    • pp.549-556
    • /
    • 2001
  • Heat flow characteristics during hot water extraction process was studied experimentally. Data were taken at various outlet port type for the fixed inlet port type, inlet-outlet temperature differences and mass flow rates. In this study, the temperature distribution in a storage tank and an outlet temperature were measured to predict a flow pattern in the storage tank, and a hot water extraction efficiency was analysed with respect to the variables dominating a extraction process. Experimental results show that the extraction efficiency is high in a low flow rate in case of using modified distributor I(MDI) as a outlet port type.

  • PDF

다관형 잠열축열장치의 축열특성연구 -물을 매체로 한 축열 및 방열과정 분석- (Study on the Thermal Storage Characteristics of a Multi-capsule type LTES System -Analysis for Heat Charging and Discharging Process for Water Flow-)

  • 김영복
    • Journal of Biosystems Engineering
    • /
    • 제19권1호
    • /
    • pp.62-69
    • /
    • 1994
  • This study was designed to seek information on the heat charging and discharging characteristics of a multi-capsule type LTES(Latent Heat of Fusion Thermal Energy Storage) system, and especially prediction equation of outlet water temperature from the system. During heat charging process, the water temperature in the LTES tank increased very slowly in comparison with a predicted one and was kept near the melting point of the PCM for about 25 minutes. During heat discharging process, the latent heat discharging period of the outlet water temperature became longer as the inlet water temperature became higher and/or mass flow rate became lower. The dimensionless temperature of the outlet water was predicted by linking three equations of ${\theta}=1.1Exp(-{\tau}/0.82)$, ${\theta}=-0.06{\tau}+0.3$, ${\theta}=0.8Exp(-{\tau}/1.4)$ ($r^2{\leq}0.88$) depending on discharging period regardless of mass flow rates on the case of the inlet water temperature at $21.5^{\circ}C$.

  • PDF

온수 추출과정 동안 축열조 내의 열성층 특성 및 온수 이용률에 관한 연구 (A Study on Thermal Stratification Characteristics and Useful Rate of Hot Water in Thermal Storage Tank during Hot Water Extraction Process)

  • 장영근;박정원
    • 설비공학논문집
    • /
    • 제14권6호
    • /
    • pp.503-511
    • /
    • 2002
  • Heat flow characteristics during hot water extraction process was studied experimentally. Data were taken at various outlet port type for the fixed inlet port type, inlet-outlet temperature differences and mass flow rates. In this study, the temperature distribution in a storage tank and an outlet temperature were measured to predict a degree of stratification in the storage tank, and a useful rate of hot water was analysed with respect to the variables dominating a extraction process. Experimental results show that the degree of stratification and useful rate of hot water are all high in a low flow rate in case of using modified distributor I (MDI) as the outlet port type.

An Experimental Study on the Performance of Air/Water Direct Contact Air Conditioning System

  • Yoo, Seong-Yeon;Kwon, Hwa-Kil
    • Journal of Mechanical Science and Technology
    • /
    • 제18권6호
    • /
    • pp.1002-1009
    • /
    • 2004
  • Direct contact air conditioning systems, in which heat and mass are transferred directly between air and water droplets, have many advantages over conventional indirect contact systems. The purpose of this research is to investigate the cooling and heating performances of direct contact air conditioning system for various inlet parameters such as air velocity, air temperature, water flow rate and water temperature. The experimental apparatus comprises a wind tunnel, water spray system, scrubber, demister, heater, refrigerator, flow and temperature controller, and data acquisition system. The inlet and outlet conditions of air and water are measured when the air contacts directly with water droplets as a counter flow in the spray section of the wind tunnel, and the heat and mass transfer rates between air and water are calculated. The droplet size of the water sprays is also measured using a Malvern Particle Analyzer. In the cooling conditions, the outlet air temperature and humidity ratio decrease as the water flow rate increases and as the water temperature, air velocity and temperature decrease. On the contrary, the outlet air temperature and humidity ratio increase in the heating conditions as the water flow rate and temperature increase and as the air velocity decreases.

냉매 내 수분의 혼입량이 차량 에어컨의 냉각성능에 미치는 영향 (Effects of Water Amount in Refrigerant on Cooling Performance of Vehicle Air Conditioner)

  • 문성원;민영봉;정태상
    • Journal of Biosystems Engineering
    • /
    • 제36권5호
    • /
    • pp.319-325
    • /
    • 2011
  • This study was conducted to figure out the diagnosis basis of cooling performance depending on water amount in the refrigerant of air conditioner, which can be estimated by the temperatures and pressures along the refrigerant circulation line. A car air conditioner of SONATA III (Hyundai motor Co., Korea) was tested at maximum cooling condition at the engine speed of 1500 rpm in the room controlled at 33~$35^{\circ}C$ air temperature and 55~57% relative humidity conditionally. Measured variables were temperature differences between inlet and outlet pipe surfaces of the compressor, condenser, receive drier and evaporator; and high pressure and low pressure in the refrigerant circulation line; and temperature difference between inlet and outlet air of the cooling vent of evaporator. In this study, changes of the water amount in the refrigerant were correlated to the temperatures and pressure changes and also water amount caused poor cooling performance. As water amount increased in the refrigerant in the air conditioner, the performance of the cooling or the heat transfer became worse. Temporal variations of the surface temperature of the evaporator outlet pipe and the low-side pressure showed various patterns that could estimate the water amount. When the water amount caused bad cooling performance, the patterns of the temperature of the evaporator outlet pipe indicated irregular fluctuation greater than $5^{\circ}C$. When the diagnosis system is using just external sensors of the low-side pressure and the temperatures of inlet and outlet air of cooling vent of the evaporator, the precise pattern of bad cooling performance caused by excess water amount in the cooling line was irregular pressure fluctuation, 25 kPa under 120 kPa, and temperature, $12^{\circ}C$ and less.

수중 하베스트형 빙축열 시스템의 운전특성 실험 (Experiments on Operation Characteristics of In-Water Harvest-Type Ice Storage System)

  • 최인수;김재돌;윤정인
    • 대한기계학회논문집B
    • /
    • 제25권5호
    • /
    • pp.653-659
    • /
    • 2001
  • This paper is concerned with the development of a new method for making and separating ice in-water and saving floated ice by installing an evaporation panel in an ice storage tank. The new method shows very good heat transfer efficiency than that of the convectional method. It is because the evaporation panel is directly contacted with water in the storage tank. The experiments were performed by varying inlet and outlet refrigerant temperatures of its evaporator. From the experimental results, the operating characteristics of in-water harvest-type ice storage system were investigated by measuring temperature and pressure at each point of the ice storage system and power required to operating compressor respect to the changes of the inlet and outlet refrigerant temperature of evaporator. It can be think that defrost frequency decreased and heavy ice created as the refrigerant temperature of evaporator outlet and defrost setting temperature is low so gotten result can effect to release efficiency. Also, consumption power, condensing heat quantity, refrigerating capacity and performance efficiency decreased as time goes by. Therefore, these results provide the basic data for system optimization, performance improvement and the possibility of application to other fields.

암모니아/물 흡수식 냉동기의 수직원관형 흡수기의 동적 모델 (Dynamic Model of a Vertical Tube Absorber for Ammonia/water Absorption Refrigerators)

  • 문현석;정은수;김병주
    • 설비공학논문집
    • /
    • 제14권10호
    • /
    • pp.844-853
    • /
    • 2002
  • A dynamic model which simulates the coupled heat and mass transfer within a vertical tube absorber was developed. The liquid film is a binary mixture of two components, and both of these components are present in the vapor phase. The pressure, concentration, temperature and mass flow rate of the vapor are obtained by assuming that the pressure is uniform within an absorber. The model was applied to an absorber for an ammonia/water absorption refrigerator. The transient behaviors of the pressure, the outlet temperature and the concentration of the solution and the cooling water outlet temperature on a step change at the absorber inlet of the cooling water temperature, the vapor mass flow rate and the concentration of the solution were shown.

삼중효용 흡수사이클의 성능특성 평가 (evaluation of Performance Characteristic on Triple Effect Absorption Cycle)

  • 권오경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권6호
    • /
    • pp.782-791
    • /
    • 1998
  • This paper presents a computer simulation of five types of triple effect absorption cycles employ-ing the refrigerant absorbent combinations of NH3/LiNO3 low-pressure type NH3/LiNO3+H2O/LiBr binary two-stage type series flow cycle and two types of parallel flow cycle for H2O/LiBr. The absorption systems is investigated through cycle simulation to obtain the system characteristics with the cooling water inlet temperature approach temperature of absorber loss temperature of absorber and chilled water outlet temperature. The most important characteristic temperature of absorber and chilled water outlet temperature. The most important characteristic of NH3/LiNO3 low-pressure type and a NH3/LINO3+H2O/LiBr binary two-stage type is that it obtains a coefficient of performance higher than the sum of the performance coefficients of its part operating independently. As a result of this analysis the optimum designs and operating conditions were determined based on the operating conditions and the coefficient of performance.

  • PDF

베이즈 분류기를 이용한 수냉식 냉동기의 고장 진단 방법에 관한 실험적 연구 (An Experimental Study on Fault Detection and Diagnosis Method for a Water Chiller Using Bayes Classifier)

  • 이흥주;장영수;강병하
    • 설비공학논문집
    • /
    • 제20권7호
    • /
    • pp.508-516
    • /
    • 2008
  • Fault detection and diagnosis(FDD) system is beneficial in equipment management by providing the operator with tools which can help find out a failure of the system. An experimental study has been performed on fault detection and diagnosis method for a water chiller. Bayes classifier, which is one of classical pattern classifiers, is adopted in deciding whether fault occurred or not. Failure modes in this study include refrigerant leakage, decrease in mass flow rate of the chilled water and cooling water, and sensor error of the cooling water inlet temperature. It is possible to detect and diagnose faults in this study by adopting FDD algorithm using only four parameters(compressor outlet temperature, chilled water inlet temperature, cooling water outlet temperature and compressor power consumption). Refrigerant leakage failure is detected at 20% of refrigerant leakage. When mass flow rate of the chilled and cooling water decrease more than 8% or 12%, FDD algorithm can detect the faults. The deviation of temperature sensor over $0.6^{\circ}C$ can be detected as fault.

대형 댐 건설이 주변 지역의 안개 특성에 미친 영향 - 주암댐과 충주댐을 사례로 - (The Impact of the Dam Construction on the Fog Characteristics of Its Surrounding Area)

  • 이승호;허인혜
    • 환경영향평가
    • /
    • 제12권2호
    • /
    • pp.109-120
    • /
    • 2003
  • This paper examined the impacts of dam construction on fog characteristics over surrounding areas. Juamdam which only supplies the water for use and Chungjudam which generates electricity were selected. The number of foggy days, fog occurrence and dissipation time and the differences of each lake water temperature and air temperature at Sunchun and Chungju were analyzed. After the construction of dam, the relative humidity and water vapor pressure were decreased at Sunchun and Chungju. The number of foggy days did not increase at Sunchun while largely increased at Chungju. Just because Juamdam were contained water, the water vapor pressure at surrounding areas of the weather station were largely decreased. It delayed the time of fog occurrence by bringing out the decrease of steam fog. The foggy days increased over the Chungju area due to the difference between air and cold outlet water temperature. The increase of foggy days mainly resulted from evaporation during colder seasons and from the temperature inversion over the water surface during warmer seasons.