• Title/Summary/Keyword: Outlet height

Search Result 99, Processing Time 0.028 seconds

A study of Improvement on the Road Drainage Poor Site (도로배수 취약구간의 개선방안에 대한 연구)

  • Lee, Man-Seok;Kim, Heung-Rae;Lee, Kyung-Ha;Kang, Min-Soo;Song, Min-Tae
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.125-131
    • /
    • 2011
  • This research aims to investigate the cause of the occurrence of a weak road drainage section scientifically and specifically through a site survey for a poorly drained section occurring due to rainfalls during road operation. This paper deeply reviewed the existing research results and current situation data on the poorly drained sections accumulated in Korea Expressway Corporation in order to investigate the cause of the occurrence of a weak road drainage section, and deeply verified and analyzed the weak sections for the road surface drainage facilities and the other road drainage facilities by visiting the expressway controlled by the 6 local headquarters and 33 branches of Korea Expressway Corporation. As a result of site surveys for the weak road drainage sections, i) in a road surface section, occurrence of ponding in the road shoulder pavement due to slope changes, bad collection of water in the collecting well at a median strip, shortage of road shoulder dike height, and inferior construction, etc. was analyzed to be the main cause of the occurrence of poorly drained sections, and ii) in a road neighborhood section, the occurrence of pavement height difference in a main road and shoulder section due to inferior ditches on a slope and the bad drain age at the inlet and outlet of a culvert due to soil deposits, debris, etc. were analyzed to be the main cause of the occurrence of weak sections. Proposed as a plan to improve the poorly drainage section of road were i)calculation of capacity through material changes at the ditch, enhancement of vertical sections and hydraulic analysis in terms of construction and other aspects, ii)derivation of a combined slope considering a slope and a vertical linearity and maintenance of proper distance between drainage structures in a vertical concave section in terms of geometrical structure, and iii)calculation of the drainage facility installation interval using a minutely rainfall intensity formula and a non-uniform flow analysis technique in terms of hydraulics and hydrologics and prompt removal of rainfalls from the road surface according to a linear drainage method.

Drying Characteristics of High Moisture Low Rank Coal using a Steam Fluidized-bed Dryer (스팀 유동층 건조기를 이용한 고수분 저등급 석탄의 건조 특성)

  • Kim, Gi Yeong;Rhee, Young-Woo;Park, Jae Hyeok;Shun, Dowon;Bae, Dal-Hee;Shin, Jong-Seon;Ryu, Ho-Jung;Park, Jaehyeon
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.321-329
    • /
    • 2014
  • In this study, Indonesia low rank coal, which has moisture content of around 26%, is dried less than 5% by using a laboratory-scale (batch type) steam fluidized-bed dryer in order to produce the low-moisture, high rank coal. Normally, CCS (carbon capture and storage) process discharges $CO_2$ and steam mixture gas around $100-150^{\circ}C$ of temperature after regeneration reactor. The final purpose of this research is to dry low rank coal by using the outlet gas of CCS process. At this stage, steam is used as heat source for drying through the heat exchanger and $CO_2$ is used as fluidizing gas to the dryer. The experimental variables were the steam flow rate ranging from 0.3 to 1.1 kg/hr, steam temperature ranging from 100 to $130^{\circ}C$, and bed height ranging from 9 to 25 cm. The characteristics of the coal, before and after drying, were analyzed by a proximate analysis, the heating value analysis and particle size analysis. In summary, the drying rate of low rank coal was increased as steam flow rate and steam temperature increased and increased as bed height decreased.

Tip Clearance Effects on Inlet Hot Streaks Migration Characteristics in Low Pressure Stage of a Vaneless Counter-Rotating Turbine

  • Zhao, Qingjun;Wang, Huishe;Zhao, Xiaolu;Xu, Jianzhong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.25-34
    • /
    • 2008
  • In this paper, three-dimensional multiblade row unsteady Navier-Stokes simulations at a hot streak temperature ratio of 2.0 have been performed to reveal the effects of rotor tip clearance on the inlet hot streak migration characteristics in low pressure stage of a Vaneless Counter-Rotating Turbine. The hot streak is circular in shape with a diameter equal to 25% of the high pressure turbine stator span. The hot streak center is located at 50% of the span and the leading edge of the high pressure turbine stator. The tip clearance size studied in this paper is 2.0mm(2.59% high pressure turbine rotor height, and 2.09% low pressure turbine rotor height). The numerical results show that the hot streak is not mixed out by the time it reaches the exit of high pressure turbine rotor. The separation of colder and hotter fluid is observed at the inlet of low pressure turbine rotor. Most of hotter fluid migrates towards the rotor pressure surface, and only little hotter fluid migrates to the rotor suction surface when it convects into the low pressure turbine rotor. And the hotter fluid migrated to the tip region of the high pressure turbine rotor impinges on the leading edge of the low pressure turbine rotor after it goes through the high pressure turbine rotor. The migration of the hotter fluid directly results in very high heat load at the leading edge of the low pressure turbine rotor. The migration characteristics of the hot streak in the low pressure turbine rotor are dominated by the combined effects of secondary flow and leakage flow at the tip clearance. The leakage flow trends to drive the hotter fluid towards the blade tip on the pressure surface and to the hub on the suction surface, even partial hotter fluid near the pressure surface is also driven to the rotor suction surface through the tip clearance. Compared with the case without rotor tip clearance, the heat load of the low pressure turbine rotor is intensified due to the effects of the leakage flow. And the numerical results also indicate that the leakage flow effect trends to increase the low pressure turbine rotor outlet temperature at the tip region.

  • PDF

Fabrication and validation study of a 3D tumor cell culture system equipped with bloodvessle-mimik micro-channel (혈관모사 마이크로채널이 장착된 3D 종양 세포 배양 시스템의 제작 및 검증 연구)

  • Park, Jeong-Yeon;Koh, Byum-seok;Kim, Ki-Young;Lee, Dong-Mok;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.11-16
    • /
    • 2021
  • Recently, three-dimensional (3D) cell culture systems, which are superior to conventional two-dimensional (2D) vascular systems that mimic the in vivo environment, are being actively studied to reproduce drug responses and cell differentiation in organisms. Conventional two-dimensional cell culture methods (scaffold-based and non-scaffold-based) have a limited cell growth rate because the culture cannot supply the culture medium as consistently as microvessels. To solve this problem, we would like to propose a 3D culture system with an environment similar to living cells by continuously supplying the culture medium to the bottom of the 3D cell support. The 3D culture system is a structure in which microvascular structures are combined under a scaffold (agar, collagen, etc.) where cells can settle and grow. First, we have manufactured molds for the formation of four types of microvessel-mimicking chips: width / height ①100 ㎛ / 100 ㎛, ②100 ㎛ / 50 ㎛, ③ 150 ㎛ / 100 ㎛, and ④ 200 ㎛ / 100 ㎛. By injection molding, four types of microfluidic chips were made with GPPS (general purpose polystyrene), and a 100㎛-thick PDMS (polydimethylsiloxane) film was attached to the top of each microfluidic chip. As a result of observing the flow of the culture medium in the microchannel, it was confirmed that when the aspect ratio (height/width) of the microchannel is 1.5 or more, the fluid flows from the inlet to the outlet without a backflow phenomenon. In addition, the culture efficiency experiments of colorectal cancer cells (SW490) were performed in a 3D culture system in which PDMS films with different pore diameters (1/25/45 ㎛) were combined on a microfluidic chip. As a result, it was found that the cell growth rate increased up to 1.3 times and the cell death rate decreased by 71% as a result of the 3D culture system having a hole membrane with a diameter of 10 ㎛ or more compared to the conventional commercial. Based on the results of this study, it is possible to expand and build various 3D cell culture systems that can maximize cell culture efficiency by cell type by adjusting the shape of the microchannel, the size of the film hole, and the flow rate of the inlet.

Solid Flow Rate and Gas Bypassing with Operating Variables of J-valve in Multistage Annular Type Fluidized Beds (다단 환원형 유동층에서 J-valve의 운전변수에 따른 고체 흐름량 및 기체 우회)

  • Hong, Yoon-Seok;Kang, Gyung-Soo;Park, Joo-Sik;Lee, Dong-Hyun
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.62-68
    • /
    • 2011
  • Hydrodynamic characteristics in multistage annular type fluidized bed (riser: $0.01{\times}0.025{\times}2.8m^3$, J-valve: $0.009{\times}0.015m^2$)were investigated. Glass beads ($d_p=101{\mu}m$, ${\rho}_b=1,590kg/m^3$, $U_{mf}=1.25{\times}10^{-2}m/s$, Geldart classification B) was used as a bed material. Accumulated weight by the electronic balance was measured to determine the solid flow rate in batch-type. In circulation condition, we measured the accumulated weight of particle transported from riser. At the steady state condition, solid circulation rate was calculated from time interval of the heated bed material passing between two thermocouples. Solid flow rate increased with increasing inlet gas velocity ($1.2-2.6U_{mf}$) and the static bed height (z, 0.24-0.68 m) from 2.2 to 23.4 kg/s. However, mean residence time decreased with increasing inlet gas velocity ($1.2-2.6U_{mf}$) and the static bed height (z, 0.24-0.68 m) from 1,438 to 440 s. The solid holdup in the riser was determined by measuring pressure differences according to the riser height. These results showed a similar trend to that of simple exponential decay type except for the top section of the riser. To verify the gas bypassing from top bubbling beds to middle bubbling beds, $CO_2$ gas was injected by tracer gas in constant ratio, and then was measured $CO_2$ concentration in outlet gas by gas chromatography. Gas bypassing occurred below 2.6% which is negligible value.

Dust Spatial Distribution and Emission of Tunnel Ventilated Windowless Broiler Building (터널환기 무창육계사의 분진크기별 분포와 배출농도에 관한 연구)

  • Choi, H.C.;Yeon, G.Y.;Spmg, J.I.;Kang, H.S.;Kwon, D.J.;Yoo, Y.H.;Yang, C.B.;Chun, S.S.;Kim, Y.K.
    • Journal of Animal Environmental Science
    • /
    • v.12 no.3
    • /
    • pp.115-122
    • /
    • 2006
  • This study investigated the spatial distribution of dust originating from tunnel-ventilated windowless broiler building measuring 12 m wide, 61 m long, with a side wall height of 3 m and a capacity of 16,982 birds. Dust concentrations in terms of total suspended particles (TSP), and particulate matter of sizes $10\;{\mu}m$(PM10), $2.5\;{\mu}m$(PM2.5), and $1\;{\mu}m(PM1)$ were measured at 30 minutes interval by using GRIMM Aerosol Monitor (GRIMM AEROSOL). The spatial distribution of dust showed the lower dust concentration in the inlet than in the outlet of the tunnel ventilation, and dust concentration decreasing as the dust size decreased, as follows: $317.9\;{\mu}g/m^3$ TSP; $74.7{\mu}m/m^3$ PM10; $9.7\;{\mu}g/m^3$ PM2.5; and $6.2\;{\mu}g/m^3$ PM1 in the inlet; and $2,678.5\;{\mu}g/m^3$ TSP; $555.5\;{\mu}g/m^3$ PM10; $33.3\;{\mu}g/m^3$ PM2.5; and $10.2\;{\mu}g/m^3$ PM1 in the outlet. The dust concentration emitted from the tunnel ventilated fan was $446.6\;{\mu}g/m^3$ TSP; $129.1\;{\mu}g/m^3$ PM10; $15.8\;{\mu}g/m^3$ PM2.5; and $6.1\;{\mu}g/m^3$ PM1 in the 3 meters from the fan and $25.1\;{\mu}g/m^3$ TSP; $8.8\;{\mu}g/m^3$ PM10; $5.6\;{\mu}g/m^3$ PM2.5; and $4.9\;{\mu}g/m^3$ PM1 in the 50 meters from the fan.

  • PDF

A Waste Load Allocation Study for Water Quality Management of the Incheon Coastal Environment (인천해안의 수질관리를 위한 오염부하량 할당에 관한 연구)

  • Kim, So-Yeon;Choi, Jung-Hyun;Na, Eun-Hye;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.43-51
    • /
    • 2005
  • This paper presents a waste load allocation study for the Incheon coastal environment, where a computer model, called AQUASEA, was applied. A finite element mesh was constructed and refined to cover the complicated geometry of Incheon coastal sea. The tidal height at 13 places of Incheon coastal boundary and flow of the Han River were given as an input condition to the tidal simulation. All pollution sources that discharge into Incheon coast were given as input data to the water quality simulation. The modeled parameters include tidal flow and COD(Chemical Oxygen Demand). The model was calibrated and verified with the field measurements. The model results showed reasonable agreements with field measurements in both tidal flow and water quality. Systems analysis showed that the pollution load from the Han River caused recognizable impacts on the water quality of Incheon coast from Yeomhwa waterway to northern area of Younghungdo. The loads from Incheon City affected water quality from the area below Youngjongdo to the area above Jawalldo. The discharge from the Sihwa Lake caused discernible impacts on the coastal zone from the dike outlet to the Incheon harbor, and pollution loads from Kyungkido affected the sea near the Oido. An effective water quality management plan was developed from the waste load allocation analysis of the validated model, that the maximum waste loads can be discharged without violating the water quality standard given in the Incheon coastal environment.

Design of Sedimentary Rock Slopes in River Diversion Works (가배수로 터널공사의 퇴적암 사면 안정화 설계)

  • Jee, Wang-Ruel
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.17-32
    • /
    • 1998
  • The Bakun hydroelectric project includes the construction of a hydroelectric power plant with an installed capacity of 2,520MW and a power transmission system connecting to the existing transmission networks in Sarawak and Western Malaysia, The power station will consist of a 210m height concrete faced rockfill dam. During the construction of the dam and the power facilities the Balui river has to be diverted by three diversion tunnels with a length of some 1,400m each. The inner diameter of the tunnels is 12m and the tunnel width is 16m at the portal area. This paper describes the stability analysis and design methods for the open cut rock slopes in the inlet and outlet area of the diversion tunnels. The geotechnical parameters employed in stability calculations were given as a function of four. defined Rock Mass Types (RMT) which were based on RMR system from Bieniawski. The stability calculations procedure of the rock slopes are divided into two stages. In the first stage, it is calculated for the stability of each 'global' slope without any rock support and shotcrete system. In the second stage, it is calculated for each 'local'slope stability with berms and supported with rock bolts and shotcrete. The monitoring instrumentation was performed continuously and some of the design modification was carried out in order to increase the safety of failed area based on the unforeseen geological risks during the open cut excavation.

  • PDF

Improving the Distribution of Temperature by a Double Air Duct in the Air-Heated Plastic Greenhouse (시설내 온도분포 균일화를 위한 온풍난방기용 2중 덕트개발)

  • 김태영;김기덕;조일환;남은영;남윤일;우영회;문보흠
    • Journal of Bio-Environment Control
    • /
    • v.13 no.3
    • /
    • pp.162-166
    • /
    • 2004
  • Air temperature variation along the length of the air duct in an air-heated plastic greenhouse was large, 13 ~ 15$^{\circ}C$ between the front and the rear side of a greenhouse. To reduce this temperature variation, a new PE-film air duct having a small duct inside a large duct (double duct) was developed. This double duct was consisted of an inner duct with air outlets at a 0.15 m interval and an outer duct with air outlets at a 2.5 m interval. Diameters of the air outlet holes were 7, 15, and 35 cm from the front to the end of the inner duct film, while identical 10 cm holes were used on the outer duct film. As a result, air temperature was $46^{\circ}C$ at the beginning side and $47^{\circ}C$ at the ending side, while the conventional single duct had $53^{\circ}C$ at the beginning point and $38^{\circ}C$ at the ending point with a variation of $15^{\circ}C$. Height of a cucumber crop grown in a greenhouse with the new double air duct system was 65.5 cm, 14% increase as compared to that in a greenhouse with a conventional air duct system. Total fruit yield per l0a greenhouse in a greenhouse with the new double air duct system was 4,616 kg, which was 17% greater than that in a greenhouse with a conventional air duct system. Amount of heating oil consumption during March 3 to April 24, 2002 was 3,233 L per l0a greenhouse with the new double air duct system, which was 13% less than that with a conventional air duct system.

A Study on Flow Distribution to Flocculation Basins Using DOE and RSA (실험계획법과 반응표면분석법을 적용한 응집지로의 유량분배에 관한 연구)

  • Kim, Seong-Jae;Kyung, Gyu-Sun;Jeong, Heui-Jung;Kim, Hyeong-Seop;Yang, Sa-Sun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.918-928
    • /
    • 2013
  • The inequitable flow distribution to flocculation basins is an important problem faced in many water treatment plants. This is caused by the structure of a distribution channel, the height differences of outlet weirs etc. But, a modified approach for the structures has no effectiveness to achieve flow equality. The aim of this study is to reduce the inequality by adopting optimized inlet valve opening (%) of the flocculation basins using DOE (Design of Experiments) and RSA (Response Surface Analysis). The inlet valve openings (%) and inflow distributions (%) of 6 paralleled basins were set as factors (X) and characteristics(Y) respectively. 2 level factorial experiments and RSA were conducted for optimization and regression analysis (Y = f(X) + Const.). Adopting the optimized inlet valve opening (%) at field, standard deviation of flow distribution (%) and effluent turbidity was declined from 3.80% to 0.42% and from 0.29 NTU to 0.03 NTU respectively.