• Title/Summary/Keyword: Outlet channel

Search Result 181, Processing Time 0.02 seconds

Cooling Performance of a Counterflow Regenerative Evaporative Cooler with Finned Channels (대향류 핀삽입형 재생증발식 냉방기의 냉방성능)

  • Moon, Hyun-Ki;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.462-469
    • /
    • 2008
  • A regenerative evaporative cooler has been fabricated and tested for the evaluation of cooling performance. The regenerative evaporative cooler is a kind of indirect evaporative cooler comprised of multiple pairs of dry and wet channels. The air flowing through the dry channels is cooled without any change in the humidity and at the outlet of the dry channel a part of air is redirected to the wet channel where the evaporative cooling takes place. The regenerative evaporative cooler fabricated in this study consists of the multiple pairs of finned channels in counterflow arrangement. The fins and heat transfer plates were made of aluminum and brazed for good thermal connection. Thin porous layer coating was applied to the internal surface of the wet channel to improve surface wettability. The regenerative evaporative cooler was placed in a climate chamber and tested at various operation condition. The cooling performance is found greatly influenced by the evaporation water flow rate. To improve the cooling performance, the evaporation water flow rate needs to be minimized as far as the even distribution of the evaporation water is secured. At the inlet condition of $32^{\circ}C$ and 50%RH, the outlet temperature was measured at $22^{\circ}C$ which is well below the inlet wet-bulb temperature of $23.7^{\circ}C$.

A Numerical Study on Beat Transfer from an Aluminum Foam Heat Sink by Impinging Air Jet in a Confined Channel (충돌 공기제트에서 국한 유로 내 발포 알루미늄 방열기의 열전달 수치해석)

  • Lee, Sang-Tae;Kim, Seo-Young;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.883-892
    • /
    • 2002
  • A numerical study has been carried out to investigate the flow and heat transfer from an aluminum foam heat sink in a confined channel. A uniform heat flux is given at the bottom of the aluminum foam heat sink, which is horizontally placed on the heated surface. The channel walls are assumed to be adiabatic. Cold air is supplied from the top opening of the channel and exhausted to the channel outlet. Comprehensive numerical solutions are acquired to the governing Wavier-Stokes and energy equations, using the Brinkman-Forchheimer extended Darcy model and the local thermal non-equilibrium model f3r the region of porous media. Details of flow and thermal fields are examined over wide ranges of the principal parameters; i.e., the Reynolds number Re, the height of heat sink h/H, porosity $\varepsilon$and pore diameter ratio $R_{H}$.

Development and validation of a fast sub-channel code for LWR multi-physics analyses

  • Chaudri, Khurrum Saleem;Kim, Jaeha;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1218-1230
    • /
    • 2019
  • A sub-channel solver, named ${\underline{S}}teady$ and ${\underline{T}}ransient$ ${\underline{A}}nalyzer$ for ${\underline{R}}eactor$ ${\underline{T}}hermal$ hydraulics (START), has been developed using the homogenous model for two-phase conditions of light water reactors. The code is developed as a fast and accurate TH-solver for coupled and multi-physics calculations. START has been validated against the NUPEC PWR Sub-channel and Bundle Test (PSBT) database. Tests like single-channel quality and void-fraction for steady state, outlet fluid temperature for steady state, rod-bundle quality and void-fraction for both steady state and transient conditions have been analyzed and compared with experimental values. Results reveal a good accuracy of solution for both steady state and transient scenarios. Axially different values for turbulent mixing coefficient are used based on different grid-spacer types. This provides better results as compared to using a single value of turbulent mixing coefficient. Code-to-code evaluation of PSBT results by the START code compares well with other industrial codes. The START code has been parallelized with the OpenMP algorithm and its numerical performance is evaluated with a large whole PWR core. Scaling study of START shows a good parallel performance.

Estimation of Head Loss Coefficient Empirical Formulas Using Model Experimental Results in a 90° Angle Dividing Channel Junction (90도 각도를 갖는 분기수로에서 모형실험결과를 이용한 손실계수 경험식 산정)

  • Park, Inhwan;Seong, Hoje;Kim, Hyung-Jun;Rhee, Dong Sop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.6
    • /
    • pp.989-999
    • /
    • 2017
  • In this study, hydraulic experimental studies were conducted to estimate the empirical formulas of loss coefficient, which is necessary to calculate the energy loss occurred in the dividing channel junction of sewer system. The experimental apparatus was consisted of two outflow conduit with a $90^{\circ}$ angle to the inlet conduit, and the pressure and velocity heads are measured to analyze the energy losses in the branch. The measurements of the hydraulic grade line show that the hydraulic grade line was steeply descended at the dividing point due to the head loss, and the decreasing amount of velocity head increased with the increase of flowrate ratio. The head loss exponentially increased in the outlet with larger runoff as the increase of flowrate ratio and Froude number, and the head loss coefficient also increased. On the other hands, the head loss coefficients decreased in the outlet with smaller runoff as the increase of the flowrate ratio and Froude number. Using the experimental results, the empirical formulas of loss coefficient was suggested for each outlet, and the error of empirical formula was 3.91 and 5.19%, respectively. Furthermore, the total head loss coefficient calculated by the two empirical formulas was compared with the experimental results, and the error was 3.62%.

Explanation of Foaming Mechanism and Experimental Application of Foam Reduction Techniques in the Treated Wastewater Outlet of Wastewater Treatment Plant Connected to a Tidal River, Korea (감조하천에 연결된 하수처리장 방류구의 거품 형성기작 해석 및 거품발생 저감기술의 실험적 현장적용)

  • Shin, Jae-Ki;Cho, Youngsoo;Kim, Youngsung;Kang, Bok-Gyoo;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.3
    • /
    • pp.187-196
    • /
    • 2016
  • This study was performed to improve the foaming generated in the effluent of wastewater treatment plant from March 2015 to July 2016. The main cause of foaming was air entrainment by an impinging jet and the internal accumulation by the diffusion barrier. Particularly, the foam growth was most active when there is low tide and larger discharge. To solve this problem, we experimented after installing fine mesh screen and the artificial channel device with underwater discharging outlet in the treated wastewater discharge channel and the outlet, respectively. As a result, the effects of foam reduction by devices ranged 85.0~92.0% and 70.7~85.6%, respectively. In addition, the foam and the noise were easily solved, first of all look to contribute to the prevention of complaints. Our device studies were applied to a single wastewater treatment plant. However, it is considered to be able to apply in other similar cases of domestic sewage treatment plants.

Evaporation Pressure Drop Characteristics with R-22 in the Plate and Shell Heat Exchangers

  • Park, Jae-Hong;Seo, Moo-Gyo;Lee, Ki-Baik;Kim, Young-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.3
    • /
    • pp.129-137
    • /
    • 2002
  • In this study, evaporation pressure drop experiments were conducted with two types of plate and shell heat exchangers (P&SHE) using R-22. An experimental refrigerant loop has been established to measure the evaporation pressure drop of R-22 in a vertical P&SHE. The flow channels were formed by stacking three plates having a corrugated channel of a chevron angle of 45 dog. The R-22 flows down in one channel exchanging heat with the hot water flowing up in the other channel. The effect of the refrigerant mass flux, average heat flux, system pressure and vapor quality were explored in detail. During the experiment, the quality change between the inlet and outlet of the refrigerant channel ranges from 0.03 to 0.15. The present data showed that two types of P&SHE have similar trends. The pressure drop in-creases with the vapor quality for both types of P&SHE. At a higher mass flux, the Pressure drop is higher for the entire range of the vapor quality. Also, the increase in the average heat flux increases the pressure drop. Finally, at a higher system pressure, the pressure drop is found to be slightly lower compared to the lower system pressure.

Evaluation of hydraulic behavior within parallel arranged upflow sedimentation basin using CFD simulation(II) -A CFD methodology for the design of distribution channel for improving inlet equity (CFD를 이용한 병열 배열형 상향류식 침전지 수리해석에 관한 연구(II) - 침전지 내 유입유량 균등성 향상을 위한 유입 분배수로 개선 -)

  • Park, No-Suk;Kim, Seong-Su;Choi, Jong-Woong;Wang, Chang-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.2
    • /
    • pp.217-223
    • /
    • 2014
  • In order to suggest the methodology for improving the equity of flow distribution in open channel with multiple outlet, CFD simulations were carried out for actual scale distribution channel being operated in domestic G_WTP(Water Treatment Plant). Also, before and after installing the longitudinal multi hole(diameter=250 mm, 116 holes) baffle suggested by this research, turbidity measurements data were collected for evaluating the effects of hydraulic modification for inlet flow equity. From the both results, total turbidity of settled water was lowered by 30 % and equity of flow distribution was improved about 60 % compared with before hydraulic structure modification.

An Experimental Study on Pressure drop Characteristics in Plate and Shell Heat Exchanger (Plate and Shell 열교환기내의 R-22 응축압력강하 특성에 관한 실험적 연구)

  • 이기백;서무교;박재홍;김영수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1220-1227
    • /
    • 2001
  • The condensation pressure drop fur refrigerant R-22 flowing in the plate and shell heat exchanger were investigated experimentally in this study. Two vertical counterflow channels were formed in the exchanger by three plates of commercial geometry with a corrugated trapezoid shape of a chevron angel of $45^{\circ}$. The condensing R-22 flowing down in one channel exchanges heat with the cold water flowing up in the other channel. The effects of the mean vapor quality, mass flux, average imposed heat flux and system pressure of R-22 on the pressure drop were explored in detail. The quality change of R-22 between the inlet and outlet of the refrigerant channel ranges from 0.03 to 0.05. The present data showed that pressure drop increases with the vapor quality. At a higher mass flux, pressure drop is higher for the entire range of the vapor quality. Also, a rise in the average imposed heat flux causes an slight increase in the Pressure drop. Finally, at a higher system pressure the pressure drop is found to be slightly lower. Correlation is also provided for the measured pressure drops in terms of the friction factor.

  • PDF

Theoretical Study on Assessment of Tidal Stream Resources (조류자원의 평가에 관한 이론적 연구)

  • Yang, Chang-Jo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.1
    • /
    • pp.23-28
    • /
    • 2011
  • This paper outlines extraction potential of tidal stream resources from the simplified channel in which flow is driven by a head difference between inlet and outlet. Energy extraction alters the flow within a simple channel, and extraction of 10% energy flux in a natural channel would give rise to a flow speed reduction of about 5.7%. If 20% of the undisturbed energy flux is extracted, the flow speed is reduced by 11.3%. The simple channel also suggests that extractable energy might be higher if flow speed reductions are considered acceptable.

Micro- PIV Measurements of Microchannel Flows and Related Problems (마이크로 채널 내부 유동의 Micro-PIV측정과 제반 문제점)

  • Lee Sang-Joon;Kim Guk-bae
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.79-84
    • /
    • 2002
  • Most microfluidic devices such as heat sinks for cooling micro-chips, DNA chip, Lab-On-Chip, and micro pumps etc. have microchannels of various size. Therefore, the design of practical microfluidics demands detail information on flow structure inside the microchannels. However, detail velocity field measurements are rare and difficult to carry out. In addition, as the microfluidics expands, accurate understanding of microscale transport phenomena becomes very important. In this research, micro-PIV system was employed to measure the velocity fields of flow inside a micro-channel. We carried out PIV measurements for several microchannels with varying channels width, inlet and outlet shape, filters, CCD camera and ICCD camera, etc. For effective composition of micro-PIV system, first of all, it is essential to understand optics related with micro-imaging of particles and the particle dynamics encountered in micro-scale channel flows. In addition, it is necessary to find the optimal condition for given experimental environment and? micro-scale flow to be investigated. The problems encountered in measuring velocity field of micro-channel flows are discussed in this paper.

  • PDF