• Title/Summary/Keyword: Outlet air temperature

Search Result 288, Processing Time 0.031 seconds

내관에 휜을 부착한 진공관형 집열기의 열성능 해석 (Thermal Performance Analysis of Glass Evacuated Solar Collector with a Finned Tube)

  • 김용;서태범;강용혁
    • 한국태양에너지학회 논문집
    • /
    • 제24권1호
    • /
    • pp.39-45
    • /
    • 2004
  • The thermal performance of glass evacuated tube solar collectors with finned tubes is numerically modelled with code and investigated to see the effect of toe inner tube diameter and incidence angle. The solar collector consists of a two-layered glass tube and an inner tube. Finned tubes are used as the inner tube of the collector in order to improve the performance of the solar collector. Two strip-type fins are attached on the opposite sides of the inner tube surface. The fin is wide enough to be tightly fatted inside the glass tube. The results show that if the incidence angle is small, the effect of the tube diameters is not significant on the thermal performance and the outlet air temperature. If the incidence angle is large, however, the outlet air temperature and the performance increases as the inner tube diameter increases.

쇼케이스의 현장 데이터 측정 및 분석 (Measurement and Analysis of Showcase Field Data)

  • 신유환;오왕규;박기호;김영일;신영기
    • 설비공학논문집
    • /
    • 제17권5호
    • /
    • pp.436-443
    • /
    • 2005
  • Experimental study was performed to understand the operation of an on-site showcase working in a super discount store. Inlet and outlet temperatures of evaporator, condenser, expansion valve and compressor were measured for both air and refrigerant sides. Electric power consumption of compressors, defrosting heaters, cooling water pumps and etc. were measured. The operating characteristics of the showcase system under various working conditions were analyzed and discussed. During the defrosting process, the air temperature inside the showcase increased to $15^{\circ}C$, which gave harmful effect to the frozen food. The collected data will serve as valuable information for diagnosing and improving the performance of showcases.

제주지역 지하공기를 이용한 농업시설용 히트펌프시스템의 난방 성능 분석 - 제주지역을 중심으로 - (The Analysis of heating performance of heat pump system for agricultural facility using underground air in Jeju area - Focused on the Jeju Area -)

  • 강연구;임태섭
    • KIEAE Journal
    • /
    • 제16권6호
    • /
    • pp.109-114
    • /
    • 2016
  • Purpose: The underground air is the warm air discharged from the porous volcano bedrock 30-50m underground in Jeju, including excessive humidity. The temperature of the underground air is $15-20^{\circ}C$ throughout the year. In Jeju, the underground air was used for heating greenhouses by supplying into greenhouses directly. This heating method by supplying the underground air into greenhouses directly had several problems. The study was conducted to develop the heat pump system using underground air as heat source for resolving excessive humidity problem of the underground air, adopting the underground air as a farm supporting project by Ministry of Agriculture, Food and Rural Affairs(MAFRA) and saving heating cost for agricultural facilities. Method: 35kW scale(10 RT) heat pump system using underground air installed in a greenhouse of area $330m^2$ in Jeju-Special Self-Governing Province Agricultural Research & Extension Services, Seogwipo-si, Jeju. The inlet and outlet water temperature of the condenser, the evaporator and the thermal storage tank and the underground air temperature and the air temperature in the greenhouse were measured by T type thermocouples. The data were collected and saved in a data logger(MV200, Yokogawa, Japan). Flow rates of water flowing in the condenser, the evaporator and the thermal storage tank were measured by an ultrasonic flow meter(PT868, Panametrics, Norway). The total electric power that consumed by the system was measured by a wattmeter(CW240, Yokogawa, Japan). Heating COP, rejection heat of condenser, extraction heat of evaporator and heating cost were analyzed. Result: The underground air in Jeju was adopted as a farm supporting project by Ministry of Agriculture, Food and Rural Affairs(MAFRA) in 2010. From 2011, the heat pump systems using underground air as a heat source were installed in 12 farms(16.3ha) in Jeju.

핀-튜브 열교환기에서의 습증기 발생 메커니즘의 파악을 위한 실험적 연구 (An Experimental Study on Understanding of Production Mechanism of a Mist from Fin-Tube Heat Exchanger)

  • 박상균;윤석훈;김경근;김명환;오철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권3호
    • /
    • pp.595-604
    • /
    • 2001
  • As an improvement in the standard of living and economic growth, the demand for air conditioning equipment is increasing rapidly. Nowadays, air conditioning equipments are being used for industry, large building, house and car. There equipments were concentrated on improving heat efficiency of economic aspects while thy design heat exchanger for cooling and heating. These air conditioning equipments using heat exchanger cause a discomfort to user due to generating mist at the beginning of operating. Therefore, the user demand air of high class and quality. In this experimental study, to acquire elementary data for development of heat exchanger which be able to supply air of high quality, that is to say, possess a restraint effect of mist generation. We estimate an effect on cooling plate quality, supply air velocity, supply air temperature, cooled plate temperature and supply air relative humidity which have an influence on outlet air condition of heat exchanger.

  • PDF

직교류형 열교환기에 대한 엘리멘트를 이용한 열정산 방법에 관한 연구 (A Study on Cross Type Heat Exchanger Using Element Method)

  • 정형호;신흥태;김광호;이춘식
    • 설비공학논문집
    • /
    • 제3권2호
    • /
    • pp.114-122
    • /
    • 1991
  • A thermal analysis method taking into account energy balance in each elements of heat exchanger was introduced. This method has a merit in predicting the temperature field over the heat exchanger in detail. To verify this method, the results were compared with the published ones. The thermal analysis of the radiator in vehicles was also conducted and the results were compared with experimental ones. It is concluded that this method can be used in thermal analysis with relatively small error. When the velocity profile of inlet air is not uniform, the outlet temperature of cooling water is higher than that of uniform velocity profile.

  • PDF

전축열방식 빙축열 시스템의 최적제어 알고리즘 (Optimal Control Algorithms for the Full Storage Ice Cooling System)

  • 한도영;이준호
    • 설비공학논문집
    • /
    • 제14권4호
    • /
    • pp.350-357
    • /
    • 2002
  • Optimal control algorithms for the full storage ice cooling system were developed by using a dynamic simulation program. Control algorithms for the storage charging mode were developed for the chiller outlet temperature setpoint control and the chiller capacity control. Control algorithms for the storage discharging mode were developed for the proper mode selection, the storage-only mode control, and the storage-priority chiller-shared mode control. Two different cases of the expected outdoor air temperature profile and the expected cooling load profile were used to analyze the effectiveness of these algorithms. Simulation results show the energy savings and the satisfactory controls of the ice storage system. Therefore, control algorithms developed for this study may effectively be used for the improved control of the ice storage cooling system.

액상분사식 LPG 연료공급방식의 아이싱현상에 관한 연구 (Investigation of Icing Phenomenon in Liquid Phase LPG Injection System)

  • 김창업;오승묵;강건용
    • 한국분무공학회지
    • /
    • 제8권1호
    • /
    • pp.9-15
    • /
    • 2003
  • The liquid phase LPG injection (LPLI) system is considered as one of the next generation fuel supply systems for LPG, vehicles, since it can accomplish the higher power, higher efficiency, and lower emission characteristics than the existing mixer type fuel supply system. However, during the injection of liquid LPG fuel into the inlet duct of an engine, a large quantity of heat is extracted due to evaporation of fuel. A problem is that the moisture in the air freezes around the outlet of a nozzle, which is called icing Phenomenon. It may cause damage to the outlet nozzle of an injector. The frozen ice deposit detached from the nozzle also may cause a considerable damage to the inlet valve or valve seat. In this work, the experimental investigation of the icing phenomenon was carried out. The results showed that the icing phenomenon and process were mainly affected by humidity of inlet air instead of the air temperature in the inlet duct. Also, it was observed that the icing occurs first in the inlet of a nozzle, and grows considerably at the upper part of the nozzle inlet and the opposite side of the nozzle entrance. An LPG fuel, mainly consisting of butane, has lower latent heat of vaporization than that of propane, which is an advantage in controlling the icing phenomenon.

  • PDF

고분자 제습로터의 저온재생 성능시험 (Performance Test of Low Temperature Regeneration Polymeric Desiccant Rotor)

  • 이진교;이대영;오명도
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.629-632
    • /
    • 2009
  • The polymeric desiccant rotor is made from the super absorbent polymer by ion modification. The moisture sorption capacity of the super desiccant polymer(SDP) is 4 to 5 times larger than those of common desiccant meterials such as silica gel or zeolite. It is also known that SDP can be regenerated even at the relatively low temperature. To fabricate the desiccant rotor, firstly the SDP was laminated by coating the SDP on polyethylene sheet. Then corrugated and rolled up into a rotor. The diameter, the depth, the dimensions of the corrugated channel, etc. were pre-determined from numerical simulation on the heat and mass transfer in the desiccant rotor. The dehumidification performance was tested in a climate chamber. The relevant tests were carried out at the process air inlet temperature of $32^{\circ}C$, the regeneration air inlet temperature of $60^{\circ}C$ and the inlet dew-point temperature of both the process air and the regeneration air of $18.5^{\circ}C$, when the rotation period is long, the moisture sorption is not effective. In the desiccant rotor developed in this study, the optimum rotation period is found about 350s at the regeneration temperature of $60^{\circ}C$. It was found from further experiments that the optimum rotation tends to decreases as the regeneration temperature increases. Meanwhile, the outlet temperature of the process air deceases monotonically as the rotation period increases.

  • PDF

대향류 핀삽입형 재생증발식 냉방기의 냉방성능 (Cooling Performance of a Counterflow Regenerative Evaporative Cooler with Finned Channels)

  • 문현기;이대영
    • 설비공학논문집
    • /
    • 제20권7호
    • /
    • pp.462-469
    • /
    • 2008
  • A regenerative evaporative cooler has been fabricated and tested for the evaluation of cooling performance. The regenerative evaporative cooler is a kind of indirect evaporative cooler comprised of multiple pairs of dry and wet channels. The air flowing through the dry channels is cooled without any change in the humidity and at the outlet of the dry channel a part of air is redirected to the wet channel where the evaporative cooling takes place. The regenerative evaporative cooler fabricated in this study consists of the multiple pairs of finned channels in counterflow arrangement. The fins and heat transfer plates were made of aluminum and brazed for good thermal connection. Thin porous layer coating was applied to the internal surface of the wet channel to improve surface wettability. The regenerative evaporative cooler was placed in a climate chamber and tested at various operation condition. The cooling performance is found greatly influenced by the evaporation water flow rate. To improve the cooling performance, the evaporation water flow rate needs to be minimized as far as the even distribution of the evaporation water is secured. At the inlet condition of $32^{\circ}C$ and 50%RH, the outlet temperature was measured at $22^{\circ}C$ which is well below the inlet wet-bulb temperature of $23.7^{\circ}C$.

배기가스 배열을 활용한 R245fa 냉매용 고온 히트펌프 건조기의 해석 및 검증 (Analysis and Verification of High Temperature Heat Pump Dryer using Waste Heat Recovery Type for R245fa Refrigerant)

  • 배경진;차동안;권오경
    • 동력기계공학회지
    • /
    • 제20권2호
    • /
    • pp.73-78
    • /
    • 2016
  • In this study, the performance characteristics of a high temperature heat pump dryer that is able to raise the air temperature up to $80^{\circ}C$ by using waste heat as heat source were investigated numerically. The main components of the heat pump dryer were modeling as a compressor, condenser, evaporator and expansion device, and R245fa was selected as refrigerant. Experiments were also conducted to validate the numerical data. As a result, when the evaporator air inlet temperature increased from $50^{\circ}C$ to $65^{\circ}C$, the numerical results of the hot air temperature at outlet and heat pump COP were about 8~11% and 5~8% higher than that of experimental ones, respectively.