• Title/Summary/Keyword: Outer tank

Search Result 116, Processing Time 0.024 seconds

On the Leakage Analysis of a Full Containment Tank Using a FEM

  • Kim, Chung-Kyun
    • KSTLE International Journal
    • /
    • v.7 no.2
    • /
    • pp.45-50
    • /
    • 2006
  • In this paper, the leakage safety of prestressed concrete structure including the insulation panels has been analyzed using a finite element analysis just after a collapse of 9% nickel inner tank. This FEM study shows that the outer tank may contain the leaked cryogenic liquid for the time being until the primary pump in the inner tank transports stored cryogenic liquids to the nearest LNG storage tank before the outer tank is demolished. This means that the total tank thickness from the insulation panel to the outer tank system safely may retain the leaked cryogenic fluids. The FE computed results indicate that the current structure in a full containment tank is obviously enough to securing the leak-proof safety of the tank system with two primary pumps.

A Study on the Strength Safety of the Prestressed Concrete Outer Tank for a Membrane LNG Storage Tank (멤브레인식 LNG 저장탱크용 PC 외부탱크의 강도안전성에 관한 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.1
    • /
    • pp.21-27
    • /
    • 2009
  • This paper presents the numerical study on the strength safety of the prestressed concrete outer tank for a LNG storage tank, which is manufactured by sets of membrane panels with special corrugations. This study for a finite element analysis assumes that the membrane panel of the inner tank was fractured and the liquefied natural gas stored in the inner membrane tank was leaked to the prestressed concrete outer tank. The stress and displacement of the outer tank have been analyzed for five different loadings, which are originated by a hydrostatic pressure and a weight of a LNG, a temperature difference, a weight of the prestressed concrete and a boil-off gas pressure. The computed FEM results indicate that the PC outer tank with a storage capacity of 200,000$m^3$ has a good strength safety for a leaked LNG from the membrane inner tank, but the increased cryogenic loadings in which are originated by a leaked LNG decreases the strength safety of the PC structure. This may lead to the collapse of the outer storage tank.

  • PDF

Advanced Heat Transfer Analysis Model of LNG Storage Tank (LNG 저장탱크의 개선된 온도해석 모델)

  • 전세진;정철헌;진병무;김성운
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.115-120
    • /
    • 2003
  • Several methodologies were devised to reasonably predict the temperature boundary conditions of inner face of the concrete outer tank so as to set up heat transfer analysis model of the full containment above-ground LNG storage tank. In this model, outer tank is solely taken into account and the beneficial effect of suspended deck and insulation layers on the temperature distribution of outer tank is separately formulated according to the proposed procedures. More effective design of the insulations can be achieved when the proposed simple schemes are used in the preliminary stage.

  • PDF

The Development of Life Evaluation Program for LNG Storage Tank considering Fatigue and Durability (피로 및 내구성을 고려한 LNG 저장탱크의 수명평가 프로그램 개발)

  • Kim, Jung-Hoon;Kim, Young-Gu;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.3
    • /
    • pp.39-45
    • /
    • 2017
  • The LNG storage tank as core facility of LNG industry is mainly composed of the inner tank of nikel 9% steel and the outer tank of prestressed concrete. To respond proactively increased risk of structure performance deterioration due to fatigue of the inner tank and durability reduction of the outer tank, life evaluation program for LNG storage tank is needed. In this study, life evaluation program for LNG storage tank was developed to assess fatigue of the inner tank and durability(carbonation and chloride attack) of the outer tank. By defining the main three scenarios in the inner tank, the fatigue life analysis is conducted from structural analysis and Miner's damage rule. Carbonation progress of the outer tank is predicted according to thickness of cover concrete by using carbon dioxide contents and data of penetration depth. To consider a variety of input conditions and a reliability in results of chloride attack, the evaluation of choride attack for the outer tank is constructed through Life-365 program of open source.

A Study on the Strength Safety Analysis of a Full Containment LNG Storage Tank Due to a Wind Pressure (완전밀폐식 LNG 저장탱크에 작용하는 풍압에 의한 강도안전 해석에 관한 연구)

  • Kim, Chung-Kyun;Jeong, Nam-In
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.36-41
    • /
    • 2008
  • Using the finite element analysis, this paper presents the strength safety of a side wall of an outer tank and a roof structures in a full containment LNG storage tank system. The outer tank structure in which is constructed with a prestressed concrete is forced by internal hydrostatic and hydrodynamic pressures of a leaked LNG and an external wind pressure including a typhoon one. The FEM computed results show that the ring beam between a side wall of an outer tank and a roof structure supports most of the internal and the external loads. This means that the design point of the outer tank system is a ring beam structure and the other one is a center part of the roof structure. In this FE analysis model of a full containment LNG tank system, the outer tank and the roof structures are safe for the given combined loads such as an internal leaked LNG pressure and an external typhoon pressure.

  • PDF

A thermal stress and crack study by computer modelling (전산해석에 의한 온도응력 및 온도균열 검토)

  • 문수동;이상호;문한영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.375-380
    • /
    • 2002
  • Tong-young LNG tank is a LNG storage tank of 140,000 kl, and it is composed of Bottom Slab(Annular, Center), Outer Wall, Ring Beam and Roof. Generally, when concrete temperature arise, the complex thermal stress of inner and outer part can cause serious thermal crack and damage at structure. So in this paper, for the control of this thermal crack, we did the concrete mix design with the base of fly-ash 30% substitute at binder, and through the computer modelling at Bottom Slab(Annular, Center), Outer Wall, Ring Beam and Roof, we studied the probability of thermal crack by thermal crack index.

  • PDF

A Study on Pressure Vessel using Cold Stretch Method (냉연신 공법을 이용한 압력용기의 제조에 관한 연구)

  • Han, Kyu-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.153-160
    • /
    • 2018
  • A pressure vessel consists of an inner tank and the outer tank; the material of the inner tank is austenite stainless steel, and the outer tank is general carbon steel. As the storage amount increase, the size of the inner tank for LNG also increases, which eventually increases the weight of the LNG storage tank. The Cold Stretch method can transport and store the LNG in a larger amount than the conventional pressure container, and the weight of the pressure vessel can also be reduced at 50 70% due to the reduction of the thickness, which is excellent from an economic and energy consumption perspective. Although the Cold Stretch method has these advantages, the domestic situation has not developed any related legislation. In this study, the actual production of pressure vessels using the Cold Stretch method will be processed and the volume expansion after the Cold Stretch will be checked and compared with the mechanical properties.

Prediction of Fatigue Life for a 270,000 kl LNG Storage Tank According to Shape of Corner-protection Knuckle (너클 형상에 따른 LNG 저장탱크 코너프로텍션 피로수명 예측)

  • Lee, Seung Rim;Lee, Kyong Min;Kim, Han Sang
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.69-72
    • /
    • 2014
  • If LNG is leaked from 9% Ni steel inner tank by damage, LNG is retained by outer concrete tank. Then large tensile stress can be caused at cylindrical bottom of outer tank by temperature difference between outer and inner surface of outer tank. Therefore, in order to reduce the tensile stress is caused by temperature difference, corner-protection is installed with insulation and 9% Ni steel as a second barrier. In this paper, using finite element method, structural analysis was performed for rectangular and circular shape of knuckle and based on the results, fatigue life of welds of corner protection was predicted. As a consequence of structural analysis, safety factor of circular knuckle shows 33% bigger than rectangular one shows, and circular knuckle has 25% bigger fatigue life time than rectangle has. These results can be applied to life time assessment and design optimization in the future.

A Study on the Design Optimization of Corner Pprotection for LNG Storage Tank (LNG저장탱크 코너프로텍션의 설계 최적화에 관한 연구)

  • Kim, Hyung-Sik;Hong, Seong-Ho;Seo, Heung-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1384-1390
    • /
    • 2004
  • The full containment Liquefied Natural Gas(LNG) storage tank is based on a double liquid container concept : two separate containers, one within the other, are capable of containing the LNG. The outer concrete tank provides comer protection(secondary containment) to withstand and safely contain any spill from the inner tank. The comer protection is installed on inside corner surface of outer concrete tank. Because of high and complex stresses, corner protection is designed by ASME section ⅧI Div. 2, Appendix 4 on behalf of API 620 which is main design code for LNG tank. Design guidelines to determine design factors such as liner thickness and knuckle radius are not well understood because Appendix 4 is the design method not based on equation but FEM. Recently, the volume of LNG tank shows a tendency to increase. So it is necessary to set up the design guidelines to cope with change of LNG tank capacity and height/diameter ratio. In this paper, optimum design of corner protection was performed and the design guidelines were suggested by the results of FEM for LNG tanks which have different capacities and height/diameter ratio.

Analytical study of failure damage to 270,000-kL LNG storage tank under blast loading

  • Lee, Sang Won;Choi, Seung Jai;Kim, Jang-Ho Jay
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.201-214
    • /
    • 2016
  • The outer tank of a liquefied natural gas (LNG) storage tank is a longitudinally and meridianally pre-stressed concrete (PSC) wall structure. Because of the current trend of constructing larger LNG storage tanks, the pre-stressing forces required to increase wall strength must be significantly increased. Because of the increase in tank sizes and pre-stressing forces, an extreme loading scenario such as a bomb blast or an airplane crash needs to be investigated. Therefore, in this study, the blast resistance performance of LNG storage tanks was analyzed by conducting a blast simulation to investigate the safety of larger LNG storage tanks. Test data validation for a blast simulation of reinforced concrete panels was performed using a specific FEM code, LS-DYNA, prior to a full-scale blast simulation of the outer tank of a 270,000-kL LNG storage tank. Another objective of this study was to evaluate the safety and serviceability of an LNG storage tank with respect to varying amounts of explosive charge. The results of this study can be used as basic data for the design and safety evaluation of PSC LNG storage tanks.