DOI QR코드

DOI QR Code

Prediction of Fatigue Life for a 270,000 kl LNG Storage Tank According to Shape of Corner-protection Knuckle

너클 형상에 따른 LNG 저장탱크 코너프로텍션 피로수명 예측

  • Lee, Seung Rim (Institute of Gas Safety R&D, Korea Gas Safety Corporation) ;
  • Lee, Kyong Min (Institute of Gas Safety R&D, Korea Gas Safety Corporation) ;
  • Kim, Han Sang (Department of Mechanical and Automotive Engineering, Gachon University)
  • 이승림 (한국가스안전공사 가스안전연구원) ;
  • 이경민 (한국가스안전공사 가스안전연구원) ;
  • 김한상 (가천대학교 기계.자동차공학과)
  • Received : 2014.03.23
  • Accepted : 2014.04.28
  • Published : 2014.04.30

Abstract

If LNG is leaked from 9% Ni steel inner tank by damage, LNG is retained by outer concrete tank. Then large tensile stress can be caused at cylindrical bottom of outer tank by temperature difference between outer and inner surface of outer tank. Therefore, in order to reduce the tensile stress is caused by temperature difference, corner-protection is installed with insulation and 9% Ni steel as a second barrier. In this paper, using finite element method, structural analysis was performed for rectangular and circular shape of knuckle and based on the results, fatigue life of welds of corner protection was predicted. As a consequence of structural analysis, safety factor of circular knuckle shows 33% bigger than rectangular one shows, and circular knuckle has 25% bigger fatigue life time than rectangle has. These results can be applied to life time assessment and design optimization in the future.

LNG 저장탱크의 9% Ni강 내부탱크가 파손되면 LNG가 유출되어 콘크리트 외부탱크가 LNG를 저장하게 되는데 이때 외부탱크의 내면과 외면의 온도차에 의해서 외부탱크 원통형 하단부에 큰 인장응력이 발생하게 된다. 이러한 온도차에 의해 발생되는 인장응력을 감소시키기 위해 단열재와 9% Ni 강재로 이루어진 코너프로텍션이 2차 방벽으로 설치된다. 본 눈문에서는 유한요소법을 이용하여 코너프로텍션의 직사각형 너클형상과 원형 너클형상에 따른 구조해석을 실시하여 Von-Mises 응력과 용접부의 피로수명을 예측하였다. 구조해석 결과 안전계수는 원형 너클이 직사각형 너클보다 23% 크게 나타났고, 피로수명은 원형 너클이 직각 너클보다 21% 크게 나타났다. 동 결과를 이용해서 향후 코너프로텍션의 수명평가 및 최적설계 등에 활용이 가능할 것이다.

Keywords

References

  1. BS EN 14620-1-5(Design and manufacture of site built, vertical, cylindrical, flat-bottomed steel tanks for the storage of refrigerated, liquefied gases with operating temperatures between $0^{\circ}C\;and\;-165^{\circ}C$), CEN, (2006)
  2. Seung Rim Lee, Han Sang Kim, 2012, " The comparative risk assessment of LNG tank designs using FTA", KIGAS, Vol .16, No. 6, pp. 48-53 https://doi.org/10.7842/kigas.2012.16.6.48
  3. Yoon Insu, Lee Yongwon, Hong seongho and Lee Yongwon, 1994, "Finite Element Analysis of Membrane for Liquified Natural Gas,"Trans. of the KSME, Vol .18, No. 10, pp. 2797-2804
  4. Kim, H.S., Hong, S.H., Seo, H.S., 2002, "Integrity comparison for various design specifications of corner protections in LNG storage tank", KIGAS, Vol.6, No 4.
  5. Kim, H.S., Hong, S.H., Seo, H.S., 2002, "A Study on the optimum design of corner protection for LNG storage tank." Trans. of the KSME, No. 11, pp. 51-57

Cited by

  1. A Study on Application Design Scenarios for the Gas Safety Field Workers -focused on the pipe work- vol.14, pp.5, 2016, https://doi.org/10.14400/JDC.2016.14.5.273