• Title/Summary/Keyword: Outdoor Thermal Environment

Search Result 169, Processing Time 0.022 seconds

Evaluation of the Thermal Environment and Comfort in Apartment complex using Unsteady-state CFD simulation (Unsteady-state CFD 시뮬레이션을 이용한 여름철 공동주택 외부공간의 온열환경 및 쾌적성 평가)

  • Jeon, Mi-Young;Lee, Seung-Jae;Kim, Ji-Yoeng;Leigh, Seung-Bok;Kim, Taeyeon
    • KIEAE Journal
    • /
    • v.10 no.4
    • /
    • pp.67-73
    • /
    • 2010
  • As more and more people desire to live in an apartment complex with a comfortable outdoor space, many construction company became interested in outdoor design. In order to increase the use of outdoor space and create the most pleasant environment, outdoor thermal environment and comfort should be evaluated quantitatively from the design stage. This study utilized ENVI-met 3.1 model to analyze outdoor thermal environment in apartment complex, and evaluated outdoor thermal comfort in 6 points of apartment complex. The physiologically equivalent temperature(PET) was employed as a outdoor thermal index. Playground B had a poor thermal environment with the maximum PET $43^{\circ}C$ (Very hot). Because shading by building and tree didn't affect outdoor thermal environment of playground B. To design comfortable outdoor space from the view point of thermal environment, the factors influencing Mean radiant temperature(MRT) and wind speed should be considered in design stage. Since it is difficult to control outdoor thermal environment compared with indoor environment, we should take into account an assessment for outdoor thermal environment and comfort in outdoor design stage.

Development and application of an assessment tool for outdoor thermal environment (옥외 온열환경 평가를 위한 복사 연성 CFD 해석기법의 개요)

  • Lim, Jong-Yeon;Chang, Hyun-Jae;Song, Doo-Sam
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.45-55
    • /
    • 2009
  • Deterioration of the outdoor thermal environment in urban areas has become worse and worse due to the urbanization and overpopulation, etc. Most of existing researches about thermal environment are focused on the indoor environment in which the radiation heat exchange is relatively constant. However, the outdoor thermal environment is changed with time passages, because the thermal environment is highly effected by solar radiation. Thus, to simulate the outdoor thermal environment with accuracy, the solar radiation calculation should be considered, and the radiation heat exchange between building surface and ground surface should be calculated. The purpose of this study is to develop the simulator that can be possible to evaluate the outdoor thermal environment and pedestrian thermal comfort. In this paper, a new method which is coupled with convective heat transfer simulation and radiative heat transfer simulation will be proposed. And the coupled simulation method will be described through case study for outdoor thermal environment. From the results of simulation, the coupled simulation proposed in this study can assess the outdoor thermal environment with accuracy.

Thermal Comfort in Outdoor Environment by Questionnaire Survey : Using the Logistic Regresstion (로지스틱 회귀분석을 활용한 옥외공간에서의 온열쾌적감에 대한 피험자 설문 분석)

  • Lim, Jong-Yeon;Hwang, Hyo-Keun;Ryu, Min-Kyung;Song, Doo-Sam
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.97-101
    • /
    • 2009
  • Calculating and predicting the thermal comfort in outdoor environment are difficult than in indoor environment because composition parameters are variable, interrelations among parameters are very complex and human activities in outdoor are diverse. Moreover, the thermal expectancy of subject in outdoor environment is different from that of indoor environment. The aims of this study are to examine the difference between indoor and outdoor thermal comfort range. With this in mind, field measurement for estimating outdoor thermal environment and a questionnaire survey with simultaneous measurement around the subject were conducted.

  • PDF

Study on assessment of outdoor thermal environment with coupled simulation of convection and radiation (대류.복사 연성시뮬레이션을 통한 옥외 온열환경 평가 기법)

  • Ryu, Min-Kyung;Lim, Jong-Yeon;Hwang, Hyo-Keun;Song, Doo-Sam
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.565-572
    • /
    • 2009
  • Deterioration of the outdoor thermal environment in urban areas such as heat island has become worse due to urbanization and overpopulation, etc. In this study, a new method which is coupled simulation of convection and radiation to evaluate outdoor thermal environment in urban area will be proposed. Because the solar radiation affects on outdoor thermal environment massively, therefore the radiation calculation is very important in outdoor thermal environment prediction. The coupled simulation proposed in this study can assess the outdoor thermal environment with accurate.

  • PDF

Development of an assessment tool for outdoor thermal environment (옥외 온열환경 평가시뮬레이션 기법의 개발)

  • Jee, Yong-Seung;Hwang, Hyo-Keun;Lim, Jong-Yeon;Song, Doo-Sam
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.38-43
    • /
    • 2009
  • Since most of the existing CFD simulation about thermal environment was limited as indoor environment, it is not appropriate to adopt the same method for external thermal environment, because the solar radiation highly affect the outdoor thermal environment. Thus, in case of assessing the outdoor thermal environment, the radiation calculation is very important. In this study, as a new method to evaluate the outdoor thermal environment, coupled simulation of convection and radiation will be proposed.

  • PDF

Change of thermal environment in buildings by wind direction (풍향에 따른 건물군에서의 열환경 변화)

  • Kim, Sang-Jin
    • KIEAE Journal
    • /
    • v.12 no.3
    • /
    • pp.27-32
    • /
    • 2012
  • In recent years, the quality of the outdoor thermal environment has come to be regarded as important as that of the indoor thermal environment. Since the outdoor thermal environment is composed of many elements and is affected by many factors, it is not easy to evaluate the impact of each factor separately. Hence, a comprehensive assessment method is required. In order to evaluate the pedestrian level comfort of an outdoor climate, it is necessary to investigate not only wind velocity but also various physical elements, such as temperature, moisture, radiation, etc. Prediction of wind and thermal environment for a large scale buildings is one of the most important targets for research. Wind and thermal change in a city area is a very complicated phenomenon affected by many physical processes. The purpose of this study is to develop a design plan for wind environment at a large Buildings. In this study, we analyze outdoor wind environment and thermal environment on buildings using the CFD (Computational Fluid Dynamics) method. The arrangement of building models is an apartment in Jeonju. These prediction of wind and thermal environment for a large scale buildings is necessary in a plan before a building is built.

Assessment on Thermal Environment and Human Thermal Comfort in Residential Building Block through Field Measurement (실측을 통한 공동주택 단지 내에서의 온열환경 및 거주자 쾌적감 평가에 관한 연구)

  • Lim, Jong-Yeon;Hwang, Hyo-Keun;Song, Doo-Sam;Kim, Tae-Yeon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.311-317
    • /
    • 2008
  • As outdoor environment become worse due to concentration of population in large cities, the importance of environmental control strategies such as the arrangement of green space or water space and ventilation paths, has been increasingly recognized. However, most of the studies focus on the assessment on outdoor thermal environment, few studies focus on the interrelationship between thermal environment in residential block and human thermal comfort. The aims of this study is to develop the outdoor planning method to reduce the heating/cooling load in an apartment unit or entire block by the sustainable approaches in outdoor environmental design. In this paper, on the basis of the prior studies, the effect of the outdoor thermal environment on human thermal comfort will be analysed.

  • PDF

Study on the Subway Platform Thermal Environment for using Natural Energy (자연에너지 활용을 위한 지하철 승강장 열환경에 관한 연구)

  • KIM, Hoe-Ryul;KIM, Dong-Gyu;KUM, Jong-Soo;CHUNG, Yong-Hyun;PARK, Sung-Chul
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.21 no.2
    • /
    • pp.269-277
    • /
    • 2009
  • Ventilation equipment performs a central role to maintain comfort subway environment. So ventilation equipment of Busan subway line No.1 is required to improve thermal environment. In this study, conditions of thermal environment are presented to improve ventilation equipment at existing subway station platforms by measuring thermal environment of platforms operated ventilation equipment at 14 stations of Busan subway line No.1. AWS of data in comparison with the neighbouring platforms and thermal environment analysis. Thermal environment status of subway platform analysis results are as follows. 1)Daytime platform temperature was higher than outdoor temperature, but night time platform temperature was lower than outdoor temperature. 2)Train wind had effect on improving thermal comfort in platform. 3)When outdoor temperature is below $24^{\circ}C$, inlet air is able to lower than platform temperature. 4)Considering existing ventilation system, night purge systems is useful to improving platform thermal environment.

Thermal Environment Around the Outdoor Unit Installed in the Space between Buildings in the Commercial Area (상업지역내 건물 사이 공간에 설치된 실외기 주변 열 환경 분석)

  • Shin, Hak-Jong;Kwak, In-Kyu;Mun, Sun-Hye;Huh, Jung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.3
    • /
    • pp.19-27
    • /
    • 2019
  • In commercial areas, outdoor units are typically installed close to one another in the narrow space between buildings due to insufficient regulations. This makes it difficult to ventilate the discharge airflow, which may lead to deterioration of the performance of outdoor units. This study conducted CFD simulation to analyze the thermal environment according to the installation distance of the outdoor unit. The outdoor unit was installed in the space between buildings, and the thermal environment was analyzed by changing installation distance and wind speed. The performance of the outdoor unit was evaluated by measuring the on-coil temperature. The results show that the closer the distance between outdoor units, the higher the condenser on-coil temperature. Also, the on-coil temperature appeared to rise dramatically at lower wind speed.

A Study on the Indoor Thermal Environment of House Using Earth Brick Wall (황토벽돌벽 주택의 실내온열환경에 관한 연구)

  • 이재윤
    • Journal of the Korean housing association
    • /
    • v.15 no.1
    • /
    • pp.25-32
    • /
    • 2004
  • The purpose of this study is to understand the indoor thermal environment in the earth brick wall building what is called a ecological Architecture. To investigate thermal performances of the earth brick walls, it measured indoor and outdoor air temperature, relative humidity, globe temperature and PMV in reference house. The result of this study were summarized as the followings; 1) When the outdoor average air temperature was $21.8^{\circ}$, livingroom was $24.9^{\circ}$, kitchen was $25.1^{\circ}$ and 2nd floor room was $25.6^{\circ}$ at 150 cm height from the floor. 2) Although the average outdoor relative humidity was 78%, the livingroom was 67.5%. 3) As the air temperature difference between at the top and bottom was $0.6^{\circ}$ in living room, this value was below 1 % of PPD by ASHRAE Handbook. 4) Predicted Mean Vote(PMV) by ISO-7730 was +0.41.