• 제목/요약/키워드: Outdoor Coil

검색결과 31건 처리시간 0.023초

상업지역내 건물 사이 공간에 설치된 실외기 주변 열 환경 분석 (Thermal Environment Around the Outdoor Unit Installed in the Space between Buildings in the Commercial Area)

  • 신학종;곽인규;문선혜;허정호
    • 한국태양에너지학회 논문집
    • /
    • 제39권3호
    • /
    • pp.19-27
    • /
    • 2019
  • In commercial areas, outdoor units are typically installed close to one another in the narrow space between buildings due to insufficient regulations. This makes it difficult to ventilate the discharge airflow, which may lead to deterioration of the performance of outdoor units. This study conducted CFD simulation to analyze the thermal environment according to the installation distance of the outdoor unit. The outdoor unit was installed in the space between buildings, and the thermal environment was analyzed by changing installation distance and wind speed. The performance of the outdoor unit was evaluated by measuring the on-coil temperature. The results show that the closer the distance between outdoor units, the higher the condenser on-coil temperature. Also, the on-coil temperature appeared to rise dramatically at lower wind speed.

실외기 기능 교번을 통한 착상 방지 및 지연에 대한 실증 연구 (Feasibility Study on the Frost Prevention and Delay by the Method of Alternating the function of Outdoor Coil Rows)

  • 전창덕
    • 융복합기술연구소 논문집
    • /
    • 제1권1호
    • /
    • pp.1-4
    • /
    • 2011
  • The object of this experimental study is to investigate the effect on frost prevention and delay by the method of alternating the function of outdoor coil rows under the frost conditions ($2^{\circ}C/1^{\circ}C$). The heat pump system with the new method can make frost delay time longer and eliminate frost effectively. It is withstand over 280 minutes without a conventional defrosting method. Maximum COP in case of adopting new method is 13% higher than that in case of reverse cycle defrosting method. Also in case of moving air injection duct faster, the frost delay time is lengthened and its COP is enhanced more.

  • PDF

고온냉매 우회방법을 적용한 열펌프의 성능 개선 연구 (A Study on Performance Improvement of Heat Pump Adopting the Hot Gas Bypass Method)

  • 강신형;변주석
    • 에너지공학
    • /
    • 제15권4호
    • /
    • pp.235-242
    • /
    • 2006
  • 본 연구는 공기 열원 열펌프의 성능 향상을 위한 연구로써 제상 방법으로 고온냉매 우회방법을 사용하고 내부열교환기를 장착한 열펌프 시스템의 성능을 ISO5151의 표준제상 조건에서 실험하였다. 실험은 고온냉매 우회방법과 가장 일반적인 제상 방법인 시간주기 제상방법을 비교하였으며 착상 발생 후 압축기 출구의 고온냉매를 실외기 입구로 우회시킬 때 실외기 홴 속도를 정상속도에 대하여 0%, 30%, 60%, 90%로 변화 시키면서 열펌프의 성능변화를 관찰하였다. 연구결과 210분의 열펌프 가동시간 동안 고온냉매 우회방법은 시간주기 제상방법 보다 $2.2{\sim}6%$ 높은 평균 성능계수를 나타냈으며 고온냉매 우회방법에서는 실외기의 홴 속도가 60%일 때 가장 좋은 성능계수와 난방용량을 나타냈다.

반도체 클린룸용 배기 열회수식 외기공조시스템의 에너지절감에 관한 실험적 연구 (An Experimental Study on Energy Reduction of an Exhaust Air Heat Recovery Type Outdoor Air Conditioning System for Semiconductor Manufacturing Clean Rooms)

  • 송근수;유경훈;강신영;손승우
    • 설비공학논문집
    • /
    • 제21권5호
    • /
    • pp.273-281
    • /
    • 2009
  • In recent semiconductor manufacturing clean rooms, the energy consumption of outdoor air conditioning systems represents about 45% of the total air conditioning load required to maintain a clean room environment. Meanwhile, there is a large amount of exhaust air from a clean room. From an energy conservation point of view, heat recovery from the exhaust air is therefore useful for reducing the outdoor air conditioning load for a clean room. In the present work, an energy-efficient outdoor air conditioning system was proposed to reduce the outdoor air conditioning load by utilizing an air washer to recover heat from the exhaust air. The proposed outdoor air conditioning system consisted mainly of a preheating coil, an air washer, two stage cooling coils, a reheating coil, a humidifier and two heat recovery cooling coils inserted into the air washer and connected to a wet scrubber. It was shown from the lab-scale experiment with outdoor air flow of $1,000\;m^3/h$ that the proposed system was more energy-efficient for the summer and winter operations than an outdoor air conditioning system with a simple air washer.

중앙공조 및 개별공조에서의 외조기 적용 (Application of Four-season Dedicated Outdoor Air Handling Unit in Central and Personal Air-conditioning)

  • 박승태;김영일;이태호;최세영
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.591-596
    • /
    • 2008
  • The present study has been conducted to study the performance of dedicated outdoor air handling unit in central and personal air-conditioning. With conventional central and personal air-conditioning systems which are designed according to the maximum load, humidity increase above comfort level can not be avoided as the cooling load decreases. The adoption of dedicated outdoor air handling unit, however, can solve this problem. Moreover, the dedicated outdoor air handling unit has the characteristics of anti-bacteria due to dry coil, energy saving and good indoor air quality. During cooling seasons, dedicated outdoor air handling unit can save energy up to 30% than the conventional cooling+reheating system for controlling both temperature and humidity.

  • PDF

부하예측 외기냉방에 의한 건물에너지 절약에 관한 연구 (A Study on Building Energy Saving using Outdoor Air Cooling by Load Prediction)

  • 김태호;유성연;김명호
    • 설비공학논문집
    • /
    • 제29권2호
    • /
    • pp.43-50
    • /
    • 2017
  • The purpose of this study is to develop a control algorithm for outdoor air cooling based on the prediction of cooling load, and to evaluate the building energy saving using outdoor air cooling. Outdoor air conditions such as temperature, humidity, and solar insolation are predicted using forecasted information provided by the meteorological agency, and the building cooling load is predicted from the obtained outdoor air conditions and building characteristics. The air flow rate induced by outdoor air is determined by considering the predicted cooling loads. To evaluate the energy saving, the benchmark building is modeled and simulated using the TRNSYS program. Energy saving by outdoor air cooling using load prediction is found to be around 10% of the total cooling coil load in all locations of Korea. As the allowable minimum indoor temperature is decreased, the total energy saving is increased and approaches close to that of the conventional enthalpy control.

항온챔버에서 히트펌프 실외기의 성능 평가를 위한 시뮬레이션 (Simulation for Performance Evaluation of Heat Pump Outdoor Unit in the Constant Temperature Chamber)

  • 김종열
    • 융합신호처리학회논문지
    • /
    • 제24권3호
    • /
    • pp.140-146
    • /
    • 2023
  • 에너지를 절약하기 위해 고효율 히트펌프를 개발하기 위한 많은 연구가 이루어지고 있다. 그 중, 실외기 코일에 발생하는 서리가 발생하는 현상을 줄이거나 없애기 위한 연구도 동시에 이루어지고 있다. 계절과 관계없이 히트펌프의 실외기에 서리가 발생하지 않는 연구를 진행할 수 있도록 자연 상태와 동일한 조건에서 실험할 수 있는 항온챔버를 구축하였다. 항온챔버 내에 설치된 히트펌프의 실외기에 자연 상태와 같은 조건으로 시뮬레이션하였으며, 그 결과 외기온도가 낮을수록 냉매의 질량유량은 감소하였으며, 냉매의 건도 역시 외기온도에 따라 선형적으로 증가함을 확인하였다.

항온챔버에서 히트펌프 실외기의 성능을 평가하는 실제 운전 (Actual operation characteristics to evaluate the performance of heat pump outdoor unit in the constant temperature chamber)

  • 김종열
    • 융합신호처리학회논문지
    • /
    • 제23권3호
    • /
    • pp.123-128
    • /
    • 2022
  • 에너지를 절약하기 위해 고효율 히트펌프를 개발하기 위한 많은 연구가 이루어지고 있으며, 실외기 코일에 발생하는 서리가 발생하는 현상을 줄이거나 없애기 위한 연구도 동시에 이루어지고 있다. 계절과 관계없이 히트펌프의 실외기에 서리가 발생하지 않는 연구를 진행할 수 있도록 자연 상태와 동일한 조건에서 실험할 수 있는 항온챔버를 구축하였다. 항온챔버 내에 설치된 히트펌프의 실외기에 자연 상태와 같은 환경을 제공하여 실험하였으며, 그 결과 외기온도가 낮을수록 히트펌프의 효율은 낮으며, 히트펌프 시스템의 운전이 안정화 상태에 도달하는 시간은 외기온도가 낮을수록 길어지는 것을 확인하였다.

혼합 공조 시스템의 EER(A) 평가 (Evaluation of energy efficiency ratio in the mixed air conditioner system)

  • 김병순;이승홍
    • 설비공학논문집
    • /
    • 제11권4호
    • /
    • pp.542-548
    • /
    • 1999
  • Instead of testing split air conditioners, an empirically based calculation procedure may be used to estimate the Energy Efficiency Ratio at ARI A test conditions. Typically, the system involving the indoor unit well sold and the given outdoor unit is called the matched system. All other systems involving a given outdoor unit and other indoor units are called the mixed systems. To estimate the EER(A) for the mixed systems, EER(A) for the matched system must be known, Generally, the EER(A) for the matched system is known. This procedure relies on independent measurements and calculations made on an outdoor unit in conjunction with a matched indoor and a mixed indoor coil. A heat pump simulation model was used to quantify the effects of individual system components on the system performance. The procedure is applicable to all air-conditioning units having rated cooling capacities less than 19,000W and charged with refrigerant 22.

  • PDF

50 kVA 주상용 몰드변압기의 설계 및 특성평가 (The Design and Performance Test of Mold Transformer for Outdoor Pole)

  • 조한구;이운용;황보국
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 일렉트렛트 및 응용기술
    • /
    • pp.132-137
    • /
    • 2002
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss. The life of transformer is significantly dependent on the thermal behavior in windings. To analyse winding temperature rise, many transformer designer have calculated temperature distribution and hot spot point by finite element method(FEM). Recently, numerical analyses of transformer are studied for optimum design, that is electric field analysis, magnetic field, potential vibration, thermal distribution and thermal stress. In this paper, the temperature distribution of 50 kVA pole mold transformer for power distribution are investigated by FEM program and the temperature rise test of designed mold transformer carried out and test result is analyzed compare to simulation data. In this result, the designed mold transformer is satisfied to limit value of temperature and the other property is good such as voltage ratio, winding resistance, no-load loss, load loss, impedance voltage and percent regulation.

  • PDF