• Title/Summary/Keyword: Outage Cost

Search Result 102, Processing Time 0.029 seconds

Assessment of Reliability in the Distribution System of an Industrial Complex

  • Choi, Sang-Bong
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.201-207
    • /
    • 2007
  • As the power industry moves towards open competition, there has been a need for methodology to evaluate distribution power system reliability by using customer interruption costs, particularly in power supply zones under the competitive electricity market. This paper presents an algorithm to evaluate system average interruption duration index, expected energy not supplied, and system outage cost taking into consideration failure rate of the distribution facility and industrial customer interruption cost. Also, to apply this algorithm to evaluate system outage cost presented in this paper, the distribution arrangement of a dual supply system consisting of mostly high voltage customers in an industrial complex in Korea is used as a sample case study. Finally, evaluation results of system interruption cost, system average interruption duration index, and expected energy not supplied in the sample industrial complex area are shown in detail.

A Study on Construction of the CMELDC at Load Points (각 부하지점별 유효부하지속곡선 작성법에 관한 연구)

  • Kim, Hong-Sik;Mun, Seung-Pil;Choe, Jae-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.4
    • /
    • pp.195-198
    • /
    • 2000
  • This paper illustrates a new method for constructing composite power system effective load duration curve(CMELDC) at load points. The main concept of proposed method is that the CMELDC can be obtain from convolution integral processing of the outage probabilistic distribution function of not supplied power and the load duration curve given at each load point. The effective load duration curve (ELDC) at HLI plays an important part in probabilistic production simulation, reliability evaluation, outage cost assessment and power supply margins assesment for power system planning and operation. And also, the CMELDC at HLII will extend the application areas of outage cost assessment and reliability evaluation at each load point. The CMELDC at load points using the Monte Carlo method and a DC load flow constrained LP have already been developed by authors. The effective load concept at HLII, however, has not been introduced sufficiently in last paper although the concept is important. In this paper, the main concept of the effective load at HLII which is proposed in this study is defined in details as the summation of the original load and the probabilistic loads caused by the forced outage of generators and transmission lines at this load point. The outage capacity probabilistic distribution function at HLII can be obtained by combining the not supplied powers and the probabilities of the not supplied powers at this load point. It si also expected that the proposed CMELDC can be applied usefully to research areas such as reliability evaluation, probabilistic production cost simulation and analytical outage cost assessment, etc. at HLII in future. The characteristics and effectiveness of this methodology are illustrated by case study of IEEE-RTS.

  • PDF

Transmission System Expansion Planning Considering Outage Cost (공급지장비를 포함한 송전계통계획)

  • Choi, Jae-Seok;Oh, Tae-Gon;Lim, Jin-Taek;Cho, Kyeong-Hee;Jeon, Don-Hoon;Hong, Sung-Eun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.361-363
    • /
    • 2011
  • This paper proposes a method for choosing the best transmission system expansion(TEP) plan considering an annual outage cost and a probabilistic transmission system reliability criterion ($_RLOLE_{TS}$). The objective method minimizes a total cost which are an investment budget for constructing new transmission lines and an annual outage cost, subject to the probabilistic transmission system reliability criterion, which consider the uncertainties of power system facilities. Test results on an existing 21-bus system are included in the paper. It demonstrated the suitability of the proposed method for solving the transmission system expansion planning problem subject to practical future uncertainties.

  • PDF

Area Annual Outage Cost Assessment of KEPCO System by TRELSS (TRELSS를 이용한 KEPCO 계통의 공급지장비 추정연구)

  • Shi, Bo;Jeong, S.H.;Park, J.J.;Choi, J.S.;Jeon, D.H.;Yun, Y.B.;Jang, B.H.;Moon, S.P.;Han, K.N.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.578-579
    • /
    • 2007
  • The importance and necessity of conducting studies on area outage cost assessment have been increasingly important in recent years due to the competitive electricity market environment. The objective of operational issues would be to minimize the total area cost while satisfying all associated system constrains of each area[2]. This paper presents a methodology of the Area annual outage cost assessment by probabilistic reliability evaluation using TRELSS program for KEPCO system. The interrupted energy assessment rate (IEAR) is evaluated by macro approach that is using relations between GRDP and the electrical energy demand. The Expected Energy Not Supplied (EENS) of each area was evaluated using the Transmission Reliability Evaluation for Large-Scale Systems (TRELSS) Version 6_2, a program developed by EPRI are introduced in this paper.

  • PDF

A Study on Probabilistic Optimal Reliability Criterion Determination in Transmission System Expansion Planning (송전계통확충계획을 위한 확률론적 최적신뢰도 기준설정에 관한 연구)

  • Tran, TrungTinh;Kwon, Jung-Ji;Choi, Jae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.748-750
    • /
    • 2005
  • This paper approaches a methodology for deciding the optimal reliability criteria for an optimal composite power system expansion planning considering generation and transmission systems simultaneously. A probabilisticreliability criterion, $LOLE_R$(Loss of Load Expectation), is used in this study. The optimalreliability criterion $LOLE_R*$ is decided at minimum cost point of total cost curve which is the sum of the utility cost associated with construction cost and the customer outage cost associated with supply interruptions for load considering forced outage rates of elements(generators and lines) in long term forecasting. The characteristicsand effectiveness of this methodology are illustrated by the case study using MRBTS size system.

  • PDF

The Optimized Standards and Criteria for Installing Switches on Distribution Feeder (국내 배편계통의 최적 개폐기 설치 기준)

  • Jo, Nam-Hun;Ha, Bok-Nam;Lee, Heung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.5
    • /
    • pp.238-246
    • /
    • 2002
  • Utilities are trying to install the equipment of high quality to avoid deterioration of supply reliability. In addition, many sectionalizing switches which can decrease the total outage value for a fault are installed for the same reason. Therefore, utilities are interested in stun dards and criteria for installing switches to optimize the total cost on distribution systems. The affect of sectionalizing switches installed on distribution feeder is gradually decreased because the failure rate on distribution feeder is decreased. Also the automation for distribution systems is widely applied for the efficient operation. Therefore, the renewal for installation standards of sectionalizing switches Is required to reflect the current operation situation. The variable data is used to consider the KEPCO's real situation of distribution feeder as follows; the feeder capacity, connecting rate, feeder length, failure rate of distribution feeder, the failure rate of switches, perception time of feeder fault, the restoration time for a faulted section, the transfer time to other feeders, and the switching time. In this study, We propose equations which can determine the number of sectionalizing switches for minimizing the outage and switch installation cost.

The optimized standards and criteria for installing switches on distribution feeder (국내 배전계통의 최적 개폐기 설치 기준(I))

  • Cho, Nam-Hun;O, Jae-Hyeong;Lee, Heung-Ho;Ha, Bok-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.70-73
    • /
    • 2002
  • Utilities are trying to install the equipment of high quality to avoid deterioration of supply reliability. In addition, many sectionalizing switches which can decrease the total outage value for a fault are installed for the same reason. Therefore, utilities are interested in standards and criteria for installing switches to optimize the total cost on distribution systems. The affect of sectionalizing switches installed on distribution feeder is gradually decreased because the failure rate on distribution feeder is decreased. Also the automation for distribution systems is widely applied for the efficient operation. Therefore, the renewal for installation standards of sectionalizing switches is required to reflect the current operation situation. The variable data is used to consider the KEPCO's real situation of distribution feeder as follows; the feeder capacity, connecting rate, feeder length, failure rate of distribution feeder, the failure rate of switches, perception time of feeder fault, the restoration time for a faulted section, the transfer time to other feeders, and the switching time. In this study, We propose equations which can determine the number of sectionalizing switches for minimizing the outage and switch installation cost.

  • PDF

Evaluation of Optimal Transfer Capability in the Haenam-Jeju HVDC System Based on Cost Optimization

  • Son Hyun-Il;Kim Jin-O;Lee Hyo-Sang;Shin Dong-Joon
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.3
    • /
    • pp.303-308
    • /
    • 2005
  • The restructure of the electrical power industry is accompanied by the extension of the electrical power exchange. One of the key pieces of information used to determine how much power can be transferred through the network is known as available transfer capability (ATC). The traditional ATC deterministic approach is based on the severest case and it involves a complex procedure. Therefore, a novel approach for A TC calculation is proposed using cost optimization in this paper. The Jeju Island interconnected HVDC system has inland KEPCO (Korean Electric Power Corporation) systems, and its demand is increasing at the rate of about $\10[%]$ annually. To supply this increasing demand, the capability of the HVDC system must be enlarged. This paper proposes the optimal transfer capability of the HVDC system between Haenam in the inland and Jeju in Cheju Island through cost optimization. The cost optimization is based on generating cost in Jeju Island, transfer cost through Jeju-Haenam HVDC system and outage cost with one depth (N-1 contingency).

Outage Probability of a Novel Antenna Selection Schemes in Multipath Environment (다중경로 환경에서 새로운 안테나 선택 기법의 사고확률)

  • 임연주;오창국;박상규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11A
    • /
    • pp.876-882
    • /
    • 2003
  • The future wireless communication systems will use spatial multiplexing with Multiple Input Multiple Output(MIMO) system to take advantage of large channel capacity gains. In such systems it will be desirable to select a sub-set of available transmit or receive antennas to reduce cost and complexity. In this paper we propose a novel antenna selection schemes for MIMO systems be suitable for multipath environment. Also, we analyze the capacity and define the outage probability for a novel antenna selection schemes for MIMO systems in multipath environment.