• 제목/요약/키워드: Out-plane Mode

검색결과 154건 처리시간 0.02초

IgY (Immunoglobulin Yolk) 분리를 위한 3-영역 SMB (Simulated Moving Bed)와 4-영역 SMB 비교전산모사 (Comparative Simulation of 3-zone SMB (Simulated Moving Bed) and 4-zone SMB for IgY (Immunoglobulin Yolk) Purification)

  • 윤상희;김인호
    • Korean Chemical Engineering Research
    • /
    • 제50권5호
    • /
    • pp.866-873
    • /
    • 2012
  • 난황에 포함된 IgY는 포유동물에 있는 바이러스나 항원에 반응하는 항체와 같은 역할을 한다. 난황을 전처리한 후 3-zone와 4-zone SMB를 이용하여 지질단백질들로 부터 IgY를 분리하는 전산모사연구를 수행하였다. 회분식 크로마토그래피에서 전산모사 매개변수와 흡착 등온식 SMB 전산모사 변수를 얻었다. Aspen simulator를 이용하여 전산모사를 수행하여 IgY를 분리할 수 있는 3-zone과 4-zone SMB 운전조건을 비교하여 다음과 같은 결과를 얻었다. IgY와 다른 단백질의 농도와 순도를 모두 고려할 때, 꼭지점인 좌표($m_2$, $m_3$=0.1, 1.1)에서 3-zone SMB가 최적의 조건으로 생각된다. IgY 만을 고려하면 4-zone SMB가 좌표($m_2$, $m_3$=0.06, 0.5)에서 가장 높게 IgY를 분리할 수 있었다. recycle이 없는 3-zone SMB는 꼭지점 좌표에서 좌표이동이 extract의 지질 단백질 농도에 큰 영향을 주었다.

Brazilian시험의 수치해석 시뮬레이션을 통한 파괴인성 산정 및 영향변수 분석 (Fracture Toughness Evaluation and Influence Parameter Analysis by Numerical Simulation of Brazilian Test)

  • 신중호;박찬;신희순;정용복;이희근
    • 한국암반공학회:학술대회논문집
    • /
    • 한국암반공학회 2000년도 암반공학문제의 수치해석(Numerical Analysis in Rock Engineering Problems)
    • /
    • pp.67-75
    • /
    • 2000
  • 암석의 파괴인성 측정법으로서 최근에 연구되고 있는 Brazilian 파괴인성 시험을 PFC code를 이용하여 수치해석적으로 시뮬레이션하였다. 이로부터 가압면 형태, 시험편과 모델링 입자의 크기 관계, 가압면 각도 범위, 하중속도 등의 영향 변수에 대한 분석 및 적정 기준에 대해 검 토하였다. 균등한 하중 전달을 위해 가압면이 평면인 Brazilian 시험편을 도입하였는데, 시험편 중앙에서 초기 인장균열을 생성하고 파괴인성 산정에 필요한 안정한 인장균열 진전 시점의 임계하중이 나타나는 하중-변위 곡선을 얻을 수 있는 가압면 각도는 $20^{\circ}C$ -$40^{\circ}C$ 범위로 나타났다. 가압면 각도가 $20^{\circ}C$ 인 경우에, 디스크 시험편의 구성입자 반경이 1 mm 이하이고 하중속도가 0.01 mm/s 이하인 조건에서는 거의 일정한 파괴인성값을 얻을 수가 있었다. 가압면 각도가 $20^{\circ}C$이상이고 하중속도가 0.01 mm/s 이하는 파괴인성 측정에서 중요한 기본 조건인 시험편 중 에서의 인장균열 생성 및 이 인장균열의 안정적인 진전 제어를 위한 조건인 것으로 볼 수가 있다.

  • PDF

Brazilian 시험의 수치해석 시뮬레이션을 통한 파괴인성 산정 및 영향변수 분석 (Fracture Toughness Evaluation and Influence Parameter Analysis by Numerical Simulation of Brazilian Test)

  • 신중호;박찬;신희순;정용복;이희근
    • 터널과지하공간
    • /
    • 제10권3호
    • /
    • pp.320-328
    • /
    • 2000
  • 암석의 파괴인성 측정법으로서 최근에 연구되고 있는 Brazilian 파괴인성 시험을 PFC code를 이용하여 수치 해석적으로 시뮬레이션하였다. 이로부터 가압면 형태, 시험편과 모델링 입자의 크기 관계, 가압면 각도 범위, 하중속도 등의 영향 변수에 대한 분석 및 적정 기준에 대해 검토하였다. 균등한 하중 전달을 위해 가압면이 평면인 Brazilian 시험편을 도입하였는데, 시험편 중앙에서 초기 인장균열을 생성하고 파괴인성 산정에 필요한 안정한 인장균열 진전 시점의 임계하중이 나타나는 하중-변위 곡선을 얻을 수 있는 가압면 각도는 20$^{\circ}$~40$^{\circ}$범위로 나타났다. 가압면 각도가 20$^{\circ}$인 경우에, 디스크 시험편의 구성입자 반경이 1mm 이하이고 하중속도가 0.01mm/s 이하인 조건에서는 거의 일정한 파괴인성값을 얻을 수가 있었다. 가압면 각도가 20$^{\circ}$이상이고 하중속도가 0.01mm/s 이하는 파괴인성 측정에서 중요한 기본 조건인 시험편 중앙에서의 인장균열 생성 및 이 인장균열의 안정적인 진전 제어를 위한 조건인 것으로 볼 수가 있다.

  • PDF

The intrinsic instabilities of fluid flow occured in the melt of Czochralski crystal growth system

  • Yi, Kyung-Woo;Koichi Kakimoto;Minoru Eguchi;Taketoshi Hibiya
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1996년도 The 9th KACG Technical Annual Meeting and the 3rd Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.179-200
    • /
    • 1996
  • The intrinsic instabilities of fluid flow occurred in the melt of the Czochralski crystal growth system Czochralski method, asymmetric flow patterns and temperature profiles in the melt have been studied by many researchers. The idea that the non-symmetric structure of the growing equipment is responsible for the asymmetric profiles is usually accepted at the first time. However further researches revealed that some intrinsic instabilities not related to the non-symmetric equipment structure in the melt could also appear. Ristorcelli had pointed out that there are many possible causes of instabilities in the melt. The instabilities appears because of the coupling effects of fluid flow and temperature profiles in the melt. Among the instabilities, the B nard type instabilities with no or low crucible rotation rates are analyzed by the visualizing experiments using X-ray radiography and the 3-D numerical simulation in this study. The velocity profiles in the Silicon melt at different crucible rotation rates were measured using X-ray radiography method using tungsten tracers in the melt. The results showed that there exits two types of fluid flow mode. One is axisymmetric flow, the other is asymmetric flow. In the axisymmetric flow, the trajectory of the tracers show torus pattern. However, more exact measurement of the axisymmetrc case shows that this flow field has small non-axisymmetric components of the velocity. When fluid flow is asymmetric, the tracers show random motion from the fixed view point. On the other hand, when the observer rotates to the same velocity of the crucible, the trajectory of the tracer show a rotating motion, the center of the motion is not same the center of the melt. The temperature of a point in the melt were measured using thermocouples with different rotating rates. Measured temperatures oscillated. Such kind of oscillations are also measured by the other researchers. The behavior of temperature oscillations were quite different between at low rotations and at high rotations. Above experimental results means that the fluid flow and temperature profiles in the melt is not symmetric, and then the mode of the asymmetric is changed when rotation rates are changed. To compare with these experimental results, the fluid flow and temperature profiles at no rotation and 8 rpm of crucible rotation rates on the same size of crucible is calculated using a 3-dimensional numerical simulation. A finite different method is adopted for this simulation. 50×30×30 grids are used. The numerical simulation also showed that the velocity and flow profiles are changed when rotation rates change. Futhermore, the flow patterns and temperature profiles of both cases are not axisymmetric even though axisymmetric boundary conditions are used. Several cells appear at no rotation. The cells are formed by the unstable vertical temperature profiles (upper region is colder than lower part) beneath the free surface of the melt. When the temperature profile is combined with density difference (Rayleigh-B nard instability) or surface tension difference (Marangoni-B nard instability) on temperature, cell structures are naturally formed. Both sources of instabilities are coupled to the cell structures in the melt of the Czochralski process. With high rotation rates, the shape of the fluid field is changed to another type of asymmetric profile. Because of the velocity profile, isothermal lines on the plane vertical to the centerline change to elliptic. When the velocity profiles are plotted at the rotating view point, two vortices appear at the both sides of centerline. These vortices seem to be the main reason of the tracer behavior shown in the asymmetric velocity experiment. This profile is quite similar to the profiles created by the baroclinic instability on the rotating annulus. The temperature profiles obtained from the numerical calculations and Fourier transforms of it are quite similar to the results of the experiment. bove esults intend that at least two types of intrinsic instabilities can occur in the melt of Czochralski growing systems. Because the instabilities cause temperature fluctuations in the melt and near the crystal-melt interface, some defects may be generated by them. When the crucible size becomes large, the intensity of the instabilities should increase. Therefore, to produce large single crystals with good quality, the behavior of the intrinsic instabilities in the melt as well as the effects of the instabilities on the defects in the ingot should be studied. As one of the cause of the defects in the large diameter Silicon single crystal grown by the

  • PDF