• Title/Summary/Keyword: Otsu Method

Search Result 113, Processing Time 0.035 seconds

Image Thresholding Based on Within-Class Standard Deviation (클래스 내 표준편차 기반의 문턱치 처리에 의한 영상분할)

  • Sung, Jung-Min;Ha, Ho-Gun;Choi, Bong-Yeol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.216-224
    • /
    • 2013
  • The within-class variance of Otsu's method is moderate but improper in expressing class statistical distributions. Otsu's method uses a variance to represent the distribution of each class. The variance utilizes a distance square from the mean to a data. This process is not proper in denoting a real class statistical distribution because of the distance square. In this paper, to express more exact class statistical distributions, the within-class standard deviation as a criterion for threshold selection is proposed and then the optimal threshold is determined by minimizing it. In order to have validity, it is shown through the experimental results that the proposed method was more superior to the counterparts.

Multilevel Threshold Selection Method Based on Gaussian-Type Finite Mixture Distributions (가우시안형 유한 혼합 분포에 기반한 다중 임계값 결정법)

  • Seo, Suk-T.;Lee, In-K.;Jeong, Hye-C.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.725-730
    • /
    • 2007
  • Gray-level histogram-based threshold selection methods such as Otsu's method, Huang and Wang's method, and etc. have been widely used for the threshold selection in image processing. They are simple and effective, but take too much time to determine the optimal multilevel threshold values as the number of thresholds are increased. In this paper, we measure correlation between gray-levels by using the Gaussian function and define a Gaussian-type finite mixture distribution which is combination of the Gaussian distribution function with the gray-level histogram, and propose a fast and effective threshold selection method using it. We show the effectiveness of the proposed through experimental results applied it to three images and the efficiency though comparison of the computational complexity of the proposed with that of Otsu's method.

An Effective Extraction Algorithm of Pulmonary Regions Using Intensity-level Maps in Chest X-ray Images (흉부 X-ray 영상에서의 명암 레벨지도를 이용한 효과적인 폐 영역 추출 알고리즘)

  • Jang, Geun-Ho;Park, Ho-Hyun;Lee, Seok-Lyong;Kim, Deok-Hwan;Lim, Myung-Kwan
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.7
    • /
    • pp.1062-1075
    • /
    • 2010
  • In the medical image application the difference of intensity is widely used for the image segmentation and feature extraction, and a well known method is the threshold technique that determines a threshold value and generates a binary image based on the threshold. A frequently-used threshold technique is the Otsu algorithm that provides efficient processing and effective selection criterion for choosing the threshold value. However, we cannot get good segmentation results by applying the Otsu algorithm to chest X-ray images. It is because there are various organic structures around lung regions such as ribs and blood vessels, causing unclear distribution of intensity levels. To overcome the ambiguity, we propose in this paper an effective algorithm to extract pulmonary regions that utilizes the Otsu algorithm after removing the background of an X-ray image, constructs intensity-level maps, and uses them for segmenting the X-ray image. To verify the effectiveness of our method, we compared it with the existing 1-dimensional and 2-dimensional Otsu algorithms, and also the results by expert's naked eyes. The experimental result showed that our method achieved the more accurate extraction of pulmonary regions compared to the Otsu methods and showed the similar result as the naked eye's one.

Improved FCM Clustering Image Segmentation (개선된 FCM 클러스터링 영상 분할)

  • Lee, Kwang-Kyug
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.127-131
    • /
    • 2020
  • Fuzzy C-Means(FCM) algorithm is frequently used as a representative image segmentation method using clustering. FCM divides the image space into cluster regions with similar pixel values, which requires a lot of segmentation time. In particular, the processing speed problem for analyzing various patterns of the current users of the web is more important. To solve this speed problem, this paper proposes an improved FCM (Improved FCM : IFCM) algorithm for segmenting the image into the Otsu threshold and FCM. In the proposed method, the threshold that maximizes the variance between classes of Otsu is determined, applied to the FCM, and the image is segmented. Experiments show that IFCM improves performance by shortening image segmentation time compared to conventional FCM.

Comparative study of flood detection methodologies using Sentinel-1 satellite imagery (Sentinel-1 위성 영상을 활용한 침수 탐지 기법 방법론 비교 연구)

  • Lee, Sungwoo;Kim, Wanyub;Lee, Seulchan;Jeong, Hagyu;Park, Jongsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.181-193
    • /
    • 2024
  • The increasing atmospheric imbalance caused by climate change leads to an elevation in precipitation, resulting in a heightened frequency of flooding. Consequently, there is a growing need for technology to detect and monitor these occurrences, especially as the frequency of flooding events rises. To minimize flood damage, continuous monitoring is essential, and flood areas can be detected by the Synthetic Aperture Radar (SAR) imagery, which is not affected by climate conditions. The observed data undergoes a preprocessing step, utilizing a median filter to reduce noise. Classification techniques were employed to classify water bodies and non-water bodies, with the aim of evaluating the effectiveness of each method in flood detection. In this study, the Otsu method and Support Vector Machine (SVM) technique were utilized for the classification of water bodies and non-water bodies. The overall performance of the models was assessed using a Confusion Matrix. The suitability of flood detection was evaluated by comparing the Otsu method, an optimal threshold-based classifier, with SVM, a machine learning technique that minimizes misclassifications through training. The Otsu method demonstrated suitability in delineating boundaries between water and non-water bodies but exhibited a higher rate of misclassifications due to the influence of mixed substances. Conversely, the use of SVM resulted in a lower false positive rate and proved less sensitive to mixed substances. Consequently, SVM exhibited higher accuracy under conditions excluding flooding. While the Otsu method showed slightly higher accuracy in flood conditions compared to SVM, the difference in accuracy was less than 5% (Otsu: 0.93, SVM: 0.90). However, in pre-flooding and post-flooding conditions, the accuracy difference was more than 15%, indicating that SVM is more suitable for water body and flood detection (Otsu: 0.77, SVM: 0.92). Based on the findings of this study, it is anticipated that more accurate detection of water bodies and floods could contribute to minimizing flood-related damages and losses.

A Fast Thresholding Method For Pattern Matching (패턴매칭을 위한 고속 스레쉬홀딩법)

  • Li, Zhe-Xue;Kim, Sang-Woon
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.126-128
    • /
    • 2006
  • For pattern matching, an object image should be segmented and analyzed for the first time. Thresholding is a fundamental approach to segmentation that utilizes a significant degree of pixel popularity or intensity. Otsu's thresholding is one of the most veil-known methods proposed in the literature. However, the method has a disadvantage of repeatedly searching the optimal thresholds for the entire region. To overcome this problem, a number of methods have been proposed. In this paper, we propose a simple and fast thresholding method of finding multi-level threshold values by extending the Otsu's method. Our experimental results for the benchmak images show a possibility that the proposed method could be used efficiently for pattern matching.

  • PDF

Face Recognition Robust to Brightness, Contrast, Scale, Rotation and Translation (밝기, 명암도, 크기, 회전, 위치 변화에 강인한 얼굴 인식)

  • 이형지;정재호
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.6
    • /
    • pp.149-156
    • /
    • 2003
  • This paper proposes a face recognition method based on modified Otsu binarization, Hu moment and linear discriminant analysis (LDA). Proposed method is robust to brightness, contrast, scale, rotation, and translation changes. Modified Otsu binarization can make binary images that have the invariant characteristic in brightness and contrast changes. From edge and multi-level binary images obtained by the threshold method, we compute the 17 dimensional Hu moment and then extract feature vector using LDA algorithm. Especially, our face recognition system is robust to scale, rotation, and translation changes because of using Hu moment. Experimental results showed that our method had almost a superior performance compared with the conventional well-known principal component analysis (PCA) and the method combined PCA and LDA in the perspective of brightness, contrast, scale, rotation, and translation changes with Olivetti Research Laboratory (ORL) database and the AR database.

STABLE AUTONOMOUS DRIVING METHOD USING MODIFIED OTSU ALGORITHM

  • Lee, D.E.;Yoo, S.H.;Kim, Y.B.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.227-235
    • /
    • 2006
  • In this paper a robust image processing method with modified Otsu algorithm to recognize the road lane for a real-time controlled autonomous vehicle is presented. The main objective of a proposed method is to drive an autonomous vehicle safely irrespective of road image qualities. For the steering of real-time controlled autonomous vehicle, a detection area is predefined by lane segment, with previously obtained frame data, and the edges are detected on the basis of a lane width. For stable as well as psudo-robust autonomous driving with "good", "shady" or even "bad" road profiles, the variable threshold with modified Otsu algorithm in the image histogram, is utilized to obtain a binary image from each frame. Also Hough transform is utilized to extract the lane segment. Whether the image is "good", "shady" or "bad", always robust and reliable edges are obtained from the algorithms applied in this paper in a real-time basis. For verifying the adaptability of the proposed algorithm, a miniature vehicle with a camera is constructed and tested with various road conditions. Also, various highway road images are analyzed with proposed algorithm to prove its usefulness.

Fish Injured Rate Measurement Using Color Image Segmentation Method Based on K-Means Clustering Algorithm and Otsu's Threshold Algorithm

  • Sheng, Dong-Bo;Kim, Sang-Bong;Nguyen, Trong-Hai;Kim, Dae-Hwan;Gao, Tian-Shui;Kim, Hak-Kyeong
    • Journal of Power System Engineering
    • /
    • v.20 no.4
    • /
    • pp.32-37
    • /
    • 2016
  • This paper proposes two measurement methods for injured rate of fish surface using color image segmentation method based on K-means clustering algorithm and Otsu's threshold algorithm. To do this task, the following steps are done. Firstly, an RGB color image of the fish is obtained by the CCD color camera and then converted from RGB to HSI. Secondly, the S channel is extracted from HSI color space. Thirdly, by applying the K-means clustering algorithm to the HSI color space and applying the Otsu's threshold algorithm to the S channel of HSI color space, the binary images are obtained. Fourthly, morphological processes such as dilation and erosion, etc. are applied to the binary image. Fifthly, to count the number of pixels, the connected-component labeling is adopted and the defined injured rate is gotten by calculating the pixels on the labeled images. Finally, to compare the performances of the proposed two measurement methods based on the K-means clustering algorithm and the Otsu's threshold algorithm, the edge detection of the final binary image after morphological processing is done and matched with the gray image of the original RGB image obtained by CCD camera. The results show that the detected edge of injured part by the K-means clustering algorithm is more close to real injured edge than that by the Otsu' threshold algorithm.

Automatic Multithreshold Selection Method (자동적인 여러 임계값 결정 기법)

  • Lee, Han;Park, Rae-Hong
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1371-1374
    • /
    • 1987
  • This paper presents a new automatic multithreshold selection method which is based on the threshold selection method proposed by Otsu. This method can overcome some of limitations of the Otsu's method. An optimal threshold is selected by the new criterion so as to maximize the separability in all subregions. To get multiple thresholds, the procedure may be recursively applied to the resultant classes which are determined by the proposed evaluation measure.

  • PDF