• Title/Summary/Keyword: Osteoporotic fractures

Search Result 100, Processing Time 0.029 seconds

An Electrical Conductivity Reconstruction for Evaluating Bone Mineral Density : Simulation (골 밀도 평가를 위한 뼈의 전기 전도도 재구성: 시뮬레이션)

  • 최민주;김민찬;강관석;최흥호
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.261-268
    • /
    • 2004
  • Osteoporosis is a clinical condition in which the amount of bone tissue is reduced and the likelihood of fracture is increased. It is known that the electrical property of the bone is related to its density, and, in particular, the electrical resistance of the bone decreases as the bone loss increases. This implies that the electrical property of bone may be an useful parameter to diagnose osteoporosis, provided that it can be readily measured. The study attempted to evaluate the electrical conductivity of bone using a technique of electrical impedance tomography (EIT). It nay not be easy in general to get an EIT for the bone due to the big difference (an order of 2) of electrical properties between the bone and the surrounding soft tissue. In the present study, we took an adaptive mesh regeneration technique originally developed for the detection of two phase boundaries and modified it to be able to reconstruct the electrical conductivity inside the boundary provided that the geometry of the boundary was given. Numerical simulation was carried out for a tibia phantom, circular cylindrical phantom (radius of 40 mm) inside of which there is an ellipsoidal homeogenous tibia bone (short and long radius are 17 mm and 15 mm, respectively) surrounded by the soft tissue. The bone was located in the 15 mm above from the center of the circular cross section of the phantom. The electrical conductivity of the soft tissue was set to be 4 mS/cm and varies from 0.01 to 1 ms/cm for the bone. The simulation considered measurement errors in order to look into its effects. The simulated results showed that, if the measurement error was maintained less than 5 %, the reconstructed electrical conductivity of the bone was within 10 % errors. The accuracy increased with the electrical conductivity of the bone, as expected. This indicates that the present technique provides more accurate information for osteoporotic bones. It should be noted that tile simulation is based on a simple two phase image for the bone and the surrounding soft tissue when its anatomical information is provided. Nevertheless, the study indicates the possibility that the EIT technique may be used as a new means to detect the bone loss leading to osteoporotic fractures.

Factors Influencing in the Bone Mineral Density and the Incidence of the Osteoporosis among Male Older than 40 Years Old (40세 이후 남성의 골밀도 관련 요인과 골다공증의 유병률)

  • Mo, Eun-Hee;Cho, Jung-Keun;Lee, Sang-Ho;Lim, Cheong-Hwan;Choi, JI-Won
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.10
    • /
    • pp.241-250
    • /
    • 2008
  • The interest in male osteoporosis is increasing as the incidence of osteoporotic fractures has increased not only in female but also in male due to the increase of old age population thanks to the development of medical science and science in general. Therefore, this study is to find factors related to bone mineral density of male older than 40 years old, to investigate the incidence of the male osteoporosis and to provide a basic result for prevention and medical treatment for the male osteoporosis. The incidence of the osteopenia and the osteoporosis at L-spine was 45% and 12.9% respectively and the incidence of them at femur was 51.9% and 7.63% respectively, among male older than 40 years old who took a medical examination. It was higher than the existing study results conducted to male older than 50 years old in USA and Europe. The incidence of them at both of L-spine and femur showed a significant difference depending the age groups. As the age increases, the average bone mineral density decreases at both of L-spine and femur. And as the weight increases and the body mass index is higher, the incidence of the osteoporosis decreases. There was no significant relation with the incidence of the osteoporosis depending on the exercise, the smoking and the drinking, but the number of exercise, smoking and drinking changes the quantity of bone and are factors influencing the bone mineral density of male person.

The Genetic Variations of SQSTM1 Gene are Associated with Bone Density in the Korean Population (한국인에서 골밀도와 SQSTM1 유전자 변이의 연관성)

  • Jin, Hyun-Seok;Eom, Yong-Bin
    • Journal of Life Science
    • /
    • v.20 no.12
    • /
    • pp.1758-1763
    • /
    • 2010
  • Osteoporosis is a complex systemic skeletal disease and a major public health concern worldwide. It is a heritable disorder characterized mainly by low bone density and/or low trauma osteoporotic fractures, both of which have strong genetic determination. However, the specific genetic variants determining risk for low bone density are still largely unknown. Here, we performed association analysis to elucidate the possible relationship between genetic polymorphisms in the SQSTM1 gene and low bone density. By examining a total of 7225 (men: 3622, women: 3603) subjects from the Korean population in the Korean Association REsource (KARE) study, we discovered that SQSTM1 gene polymorphisms were associated with bone density. The results of the BD-RT (bone density estimated by T-score at distal radius) showed that three SNPs (rs513235, rs3734007, and rs11249661) within the SQSTM1 gene were significantly associated with bone density. The results of the BD-TT (bone density estimated by T-score at midshaft tibia) showed that four SNPs (rs513235, rs3734007, rs2241349, and rs11249661) were significantly associated with bone density. The three SNPs (rs513235, rs3734007, and rs11249661) had common significance in both BD-RT and BD-TT. In summary, we found statistically significant SNPs in the SQSTM1 gene that are associated with bone density traits. Therefore, our findings suggest SQSTM1 gene could be related to pathogenesis of osteoporosis.

Rutin Improves Bone Histomorphometric Values by Reduction of Osteoclastic Activity in Osteoporosis Mouse Model Induced by Bilateral Ovariectomy

  • Lee, Hye-Hwa;Jang, Jae-Won;Lee, Jung-Kil;Park, Choon-Keun
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.4
    • /
    • pp.433-443
    • /
    • 2020
  • Objective : Osteoporosis is a disease of unbalanced bone metabolism that results in low bone mineral density with increased bone fragility and propensity for fractures. The increased rate of bone fracture due to osteoporosis places a significant burden on public health care expenditures. Therefore, numerous studies have been designed and performed to identify the drugs or health foods that can improve the bone quality or quantity. This study was designed to evaluate and analyze the therapeutic effects of rutin on histomorphometric values of the spine and femur in an osteoporotic mouse model induced by bilateral ovariectomy. Methods : Thirty female ICR mice (8 weeks old) underwent either a sham operation (only abdominal incision, sham group, n=10) or bilateral ovariectomy (n=20). The ovariectomized (OVX) animals were randomly divided into two groups : untreated OVX group (OVX-C, n=10), or rutin-administered group (OVX-R, n=10). The OVX-C group received weight-adjusted doses of saline vehicle and the OVX-R group received 50 mg/kg of rutin intraperitoneally, starting 1 day after surgery. At 4 and 8 weeks after surgery, serum estrogen, osteocalcin, alkaline phosphatase (ALP), and the telopeptide fragment of type I collagen C-terminus (CTX-1) were analyzed. Interleukin (IL)-1β, IL-6, IL-10, and tumor necrosis factor (TNF)-α were also analyzed. Bone histomorphometric parameters of the 4th lumbar vertebra and femur were determined by micro-computed tomography. Results : In OVX-C group, ALP, osteocalcin, CTX-1, IL-1β, IL-6, and TNF-α levels were significantly increased at 4 and 8 weeks compared to sham operation group. Rutin administration after OVX statistically significantly reduced ALP, CTX-1, IL-1β, IL-6, and TNF-α levels at 4 and 8 weeks. Rutin administration also improves bone histomorphometric parameters including trabecular bone volume fraction, trabecular thickness, and trabecular number. Trabecular separation was also decreased in OVX-R group compared to OVX-C group. Conclusion : The present study demonstrated that rutin has therapeutic effects on improving bone histomorphometric values in an OVX mouse model. The improvement in histomorphometric values may be associated with the reduction of osteoclastic activity via inhibition of IL-1β, IL-6, and TNF-α. In future studies, the mechanism for the effect of rutin on osteoporosis should be demonstrated more clearly to use rutin in human osteoporosis.

Korean Guideline for the Prevention and Treatment of Glucocorticoid-induced Osteoporosis

  • Park, So Young;Gong, Hyun Sik;Kim, Kyoung Min;Kim, Dam;Kim, Ha Young;Jeon, Chan Hong;Ju, Ji Hyeon;Lee, Shin-Seok;Park, Dong-Ah;Sung, Yoon-Kyoung;Kim, Sang Wan
    • Journal of Bone Metabolism
    • /
    • v.25 no.4
    • /
    • pp.195-211
    • /
    • 2018
  • Background: To develop guidelines and recommendations to prevent and treat glucocorticoid (GC)-induced osteoporosis (GIOP) in Korea. Methods: The Korean Society for Bone and Mineral Research and the Korean College of Rheumatology have developed this guideline based on Guidance for the Development of Clinical Practice Guidelines ver. 1.0 established by the National Evidence-Based Healthcare Collaborating Agency. This guideline was developed by adapting previously published guidelines, and a systematic review and quality assessment were performed. Results: This guideline applies to adults aged ${\geq}19years$ who are using or plan to use GCs. It does not include children and adolescents. An initial assessment of fracture risk should be performed within 6 months of initial GC use. Fracture risk should be estimated using the fracture-risk assessment tool (FRAX) after adjustments for GC dose, history of osteoporotic fractures, and bone mineral density (BMD) results. All patients administered with prednisolone or an equivalent medication at a dose ${\geq}2.5mg/day$ for ${\geq}3months$ are recommended to use adequate calcium and vitamin D during treatment. Patients showing a moderate-to-high fracture risk should be treated with additional medication for osteoporosis. All patients continuing GC therapy should undergo annual BMD testing, vertebral X-ray, and fracture risk assessment using FRAX. When treatment failure is suspected, switching to another drug should be considered. Conclusions: This guideline is intended to guide clinicians in the prevention and treatment of GIOP.

A Biomechanical Study on a New Surgical Procedure for the Treatment of Intertrochanteric Fractures in relation to Osteoporosis of Varying Degrees (대퇴골 전자간 골절의 새로운 수술기법에 관한 생체역학적 분석)

  • 김봉주;이성재;권순용;탁계래;이권용
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.401-410
    • /
    • 2003
  • This study investigates the biomechanical efficacies of various cement augmentation techniques with or without pressurization for varying degrees of osteoporotic femur. For this study, a biomechanical analysis using a finite element method (FEM) was undertaken to evaluate surgical procedures, Simulated models include the non-cemented(i.e., hip screw only, Type I), the cement-augmented(Type II), and the cemented augmented with pressurization(Type III) models. To simulate the fracture plane and other interfacial regions, 3-D contact elements were used with appropriate friction coefficients. Material properties of the cancellous bone were varied to accommodate varying degrees of osteoporosis(Singh indices, II∼V). For each model. the following items were analyzed to investigate the effect surgical procedures in relation to osteoporosis of varying degrees : (a) von Mises stress distribution within the femoral head in terms of volumetric percentages. (b) Peak von Mises stress(PVMS) within the femoral head and the surgical constructs. (c) Maximum von Mises strain(MVMS) within the femoral head, (d) micromotions at the fracture plane and at the interfacial region between surgical construct and surrounding bone. Type III showed the lowest PVMS and MVMS at the cancellous bone near the bone-construct interface regardless of bone densities. an indication of its least likelihood of construct loosening due to failure of the host bone. Particularly, its efficacy was more prominent when the bone density level was low. Micromotions at the interfacial surgical construct was lowest in Type III. followed by Type I and Type II. They were about 15-20% of other types. which suggested that pressurization was most effective in limiting the interfacial motion. Our results demonstrated the cement augmentation with hip screw could be more effective when used with pressurization technique for the treatment of intertrochanteric fractures. For patients with low bone density. its effectiveness can be more pronounced in limiting construct loosening and promoting bone union.

Characteristics of Blood Mixed Cement in Percutaneous Vertebroplasty (경피적 척추 성형술에서 혈액 혼합 시멘트의 특성)

  • Seo, Jin-Hyeok;Woo, Young-Ha;Jeong, Ju-Seon;Kim, Do-Hun;Kim, Ok-Gul;Lee, Sang-Wook;Park, Chan-Ho
    • Journal of the Korean Orthopaedic Association
    • /
    • v.54 no.5
    • /
    • pp.435-439
    • /
    • 2019
  • Purpose: This study evaluated the efficacy of blood mixed cement for osteoporotic vertebral compression fractures in reducing the complications of percutaneous vertebroplasty using conventional cement. Materials and Methods: This study was performed retrospectively in 80 patients, from January 2016 to January 2017. Porous cement was formed by mixing 2, 4, and 6 ml of blood with 20 g of cement used previously. A tube with a diameter and length of 2.8 mm and 215 mm, respectively, was used and the polymerization temperature, setting time, and optimal passing-time were measured and compared with those using only conventional cement. Radiologically, the results were evaluated and compared. Results: The polymerization temperature was 70.3℃, 55.3℃, 52.7℃, and 45.5℃ in the conventional cement (R), 2 ml (B2), 4 ml (B4), and 6 ml (B6), respectively, and the corresponding setting time decreased from 960 seconds (R) to 558 seconds (B2), 533 seconds (B4), and 500 seconds (B6). The optimal passing-time was 45 seconds (B2), 60 seconds (B4), and 78 seconds (B6) at 73 seconds (R), respectively and as the amount of blood increased, it was similar to the cement passing-time. The radiological results showed that the height restoration rates and the vertebral subsidence rates similar among the groups. Two cases of adjacent vertebral compression fractures in the R group and one in the B2 and B4 groups were encountered, and the leakage rate of the cement was approximately two times higher than that in the conventional cement group. Conclusion: In conventional percutaneous vertebroplasty, the procedure of using autologous blood with cement decreased the polymerization temperature, reduced the setting time, and the incidence of cement leakage was low. These properties may contribute to more favorable mechanical properties that can reduce the complications compared to conventional cements alone.

A Biomechanical Study on the Various Factors of Vertebroplasty Using Image Analysis and Finite Element Analysis (의료영상 분석과 유한요소법을 통한 추체 성형술의 다양한 인자들에 대한 생체 역학적 효과 분석)

  • 전봉재;권순영;이창섭;탁계래;이권용;이성재
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.171-182
    • /
    • 2004
  • This study investigates the biomechanical efficacies of vertebroplasty which is used to treat vertebral body fracture with bone cement augmentation for osteoporotic patients using image and finite element analysis. Simulated models were divided into two groups: (a) a vertebral body, (b) a functional spinal unit(FSU). For a vertebral body model, the maximum axial displacement was investigated under axial compression to evaluate the effect of structural integrity. The stiffness of each FE model simulated was normalized by the stiffness of intact model. In the case of FSU model, 3 types of compression fractures were formulated to assess the influence on spinal curvature changes. The FSU models were loaded under compressive pressure to calculate the change of spinal curvature. The results according to the various factors suggest that vertebroplasty has the biomechanical efficacy of the increment of structural reinforcement in a patient who has relatively high level of BMD and a patient with the amount of 15%, PMMA injection of the cancellous bone volume. The spinal curvatures after compression fracture simulation vary from 9$^{\circ}$ to 17$^{\circ}$ of kyphosis compared to that the spinal curvature of normal model was -2.8$^{\circ}$ of lordosis. These spinal curvature changes cause the severe spinal deformity under the same loading. As the degree of compressive fracture increases the spinal deformity also increases. The results indicate that vertebroplasty has the increasing effect of the structural integrity regardless of the amount of PMMA or BMD and the restoration of decreased vertebral body height may be an important factor when the compressive fracture caused the significant height loss of vertebral body.

Usefulness of Three-phasic Bone Scan in Young Male Patients Suspected of Post-traumatic Reflex Sympathetic Dystrophy Syndrome (외상후 교감신경 이영양증이 의심되는 젊은 남자 환자들에서 삼상 골스캔의 유용성)

  • Lee, Won-Woo;Kim, Tae-Uk;Kim, Tae-Hoon;Jung, Cheoul-Yun;Moon, Jin-Ho
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.1
    • /
    • pp.52-60
    • /
    • 2001
  • Purpose: In young male patients who suffered several kinds of trauma with subsequent suspicious reflex sympathetic dystrophy syndrome, we performed three-phasic bone scan in order to investigate its usefulness. Materials and Methods: Patients with narrow range of age (21-25. mean $22.8{\pm}1.3$, all male) were included with suspicious reflex sympathetic dystrophy syndrome of 12 feet and 5 hands. Only one was bilateral feet case and 16 were ipsilateral (Rt:13, Lt:3). The etiologic traumas were 4 fractures, 4 sprains, 3 blunt trauma, 2 cellulitis, 1 tendon tear, 1 crush injury, 1 overexercise, and 1 unknown. Radiologically 3 showed osteoporotic changes. Three-phasic bone scans were performed $21.2{\pm}7.3wks$ after trauma. Results: According to symptom complex, confirmatory reflex sympathetic dystrophy syndrome 4 cases and suspicious 13 were analyzed. All confirmatory cases (100%) showed increased uptake at delay phase with periarticular accentuation. Of confirmatory 4 cases, 2 showed increased uptake in all three phases (perfusion: P, blood pool: B, and delay: D), and other 2 revealed decreased P but, both increased B and D. Of suspicious 13 cases, 9(69.2%) had increased D (4 periarticular and 5 focal), 2 decreased D, and 2 symmetric D. In 12 foot cases, so-called weight hearing patterns - increased contralateral sole at P and B - were revealed in 7(58.3%). Conclusion: Diffuse periarticular increased uptake at delay phase of three-phasic bone scan was a compatible finding to reflex sympathetic dystrophy syndrome in young male patients whose symptom complex strongly designated post traumatic reflex sympathetic dystrophy syndrome.

  • PDF

A Study on Radiation Exposure Dose of Patients and Operator during Percutaneous Vertebroplasty (경피적 추체 성형술 시행 시 환자와 시술자의 방사선 피폭선량에 관한 연구)

  • Lee, Jae-Heon;Shin, Seong-gyu;Lee, Hyo-Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.2
    • /
    • pp.139-144
    • /
    • 2017
  • Percutaneous vertebroplasty (PVP) is increasingly used to treat osteoporotic vertebral fractures, myeloma and osteolytic vertebral metastases. The purpose of this study was to measure the absorbed radiation exposure dose and time during PVP and to assess the possibility of deterministic radiation effects to the operator and patient. The radiation dose and time measure by three pain physicians performed consecutive procedures using the twenty case PVP. Patient's dosimeter placed at the anteroposterior(AP) side was treatment of the vertebra body located in the upper level 2-3 and lateral(LAT) side was flank proximal to C-arm tube of back. Operator's dosimeter placed at the apron outside of upper sternum (thyroid), left chest, lower extremity and apron inside of left chest. Results: Radiation exposure times were $3.6{\pm}0.71min$. Measurements on the Patient radiation dose were AP $121.4{\pm}48.1{\mu}Sv$, LAT side $614.7{\pm}177.1{\mu}Sv$. Operator radiation dose were outside of the lead apron upper sternum $33.7{\pm}7.3{\mu}Sv$, outside of the lead apron chest $49.2{\pm}15.0{\mu}Sv$, outside of the lead apron lower extremity $12.8{\pm}3.8{\mu}Sv$ and inside of the lead apron chest $4.2{\pm}1.4{\mu}Sv$. To escape from the danger of radiation first long distance from the c-arm tube second exposure time reduced second lead apron used fluoroscopy during PVP is more safety patient and operation from the radiation exposure.