• Title/Summary/Keyword: Osteopontin expression

Search Result 87, Processing Time 0.029 seconds

Effects of Relative Lysyl Oxidase and Hydrogen Peroxide on Odontoblastic Differentiation (인간치수세포 분화과정에서 과산화수소에 대한 Lysyl Oxidase의 역할)

  • Lee, Hwa-Jeong
    • Journal of dental hygiene science
    • /
    • v.13 no.3
    • /
    • pp.321-329
    • /
    • 2013
  • Although it has been reported that lysyl oxidase (LOX) is involved in odontoblastic differentiation, the role of LOX on odontoblastic differentiation by hydrogen peroxide ($H_2O_2$) have not been clarified. In the present study, we investigated whether $H_2O_2$, reactive oxygen species (ROS), is modulated the messenger RNA (mRNA) expression and activity of LOX during odontoblastic differentiation of human dental pulp (HDP) cells. The mRNA expression was quantified by reverse transcriptase polymerase chain reaction (RT-PCR) analysis, and LOX enzyme activity was measured by high sensitive fluorescent assay. Expression of the odontoblastic differentiation marker genes were assessed in the presence and absence of specific small interfering RNAs (siRNAs) of the LOX and LOXL. The $H_2O_2$-induced mRNA expression of LOX family was significant reduction of LOX, LOXL, and LOXL3 mRNA levels in HDP cells. LOX enzyme activity was increased at $H_2O_2$ 0.3 mM for 24 hours. The mRNA expression of alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCN) was inhibited by LOX- and LOXL-specific siRNAs whereas the mRNA expression of dentin matrix protein1 (DMP1), and dentin sialophosphoprotein (DSPP) was inhibited by LOX-specific siRNA. In LOX enzyme activity, siRNA-induced knockdown of both LOX and LOXL inhibited the total amine oxidase activity in HDP cells, as in the case of mRNA expression. In conclusion, the essential role of $H_2O_2$ on odontoblastic differentiation suggests that its regulation by LOX may have pharmacologic importance in HDP cells.

Osteogenic Differentiation Potential in Parthenogenetic Murine Embryonic Stem Cells

  • Kang, Ho-In;Cha, Eun-Sook;Choi, Young-Ju;Min, Byung-Moo;Roh, Sang-Ho
    • International Journal of Oral Biology
    • /
    • v.33 no.3
    • /
    • pp.91-95
    • /
    • 2008
  • Embryonic stem cells have a pluripotency and a potential to differentiate to all type of cells. In our previous study, we have shown that embryonic stem cells (ESCs) lines can be generated from murine parthenogenetic embryos. This parthenogenetic ESCs line can be a useful stem cell source for tissue repair and regeneration. The defect in full-term development of parthenogenetic ESCs line enables researchers to avoid the ethical concerns related with ESCs research. In this study, we presented the results demonstrating that parthenogenetic ESCs can be induced into osteogenic cells by supplementing culture media with ascorbic acid and $\beta$-glycerophosphate. These cells showed morphologies of osteogenic cells and it was proven by Von Kossa staining and Alizarin Red staining. Expression of marker genes for osteogenic cells (osteopontin, osteonectin, alkaline phosphatase, osteocalcin, bone-sialoprotein, collagen type1, and Cbfa1) also confirmed osteogenic potential of these cells. These results demonstrate that osteogenic cells can be generated from parthenogenetic ESCs in vitro.

Isolation and characterization of bovine cementoblast progenitor cells

  • Saito, Masahiro;Tsunoda, Akira;Teranaka, Toshio
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.546.2-546
    • /
    • 2003
  • Dental follicle is the mesenchymal tissue which surrounds developing tooth germ. During tooth root development, periodontal components such as cementum, periodontal ligament and alveolar bone are considered to be created by progenitors present in the dental follicle. However, little is known about these progenitors. Previously we observed that cultured bovine dental follicle cells (BDFC) contained putative cementoblast progenitors. To further analyze the biology of these cells, we have attempted to immortalize BDFC by expression of the polycomb group protein Bmi-1 and human telomerase reverse transcriptase (hTERT). The BDFC expressing Bmi-1 and hTERT showed extended life span by 90 population doublings more than normal BDFC, and still contained cells with potential to differentiate into cementoblasts upon implantation into immunodeficiency mice. Among them, we established a clonal cell line designated as BCPb8, which formed cemetum-like mineralized tissue reactive to anti-cementum specific monoclonal antibody, 3G9, and expressed mRNA for bone sialoprotein, osteocalcin, osteopontin and type I collagen upon implantation. Thus with the combination of hTERT and Bmi-1, we succeeded in immortalization of cementoblast progenitor in BDFC without affecting differentiation potential. The BCPb8 progenitor cell line could be a useful tool not only to study cementogenesis but also to develop regeneration therapy for periodontitis.

  • PDF

BAP1 controls mesenchymal stem cell migration by inhibiting the ERK signaling pathway

  • Seobin Kim;Eun-Woo Lee;Doo-Byoung Oh;Jinho Seo
    • BMB Reports
    • /
    • v.57 no.5
    • /
    • pp.250-255
    • /
    • 2024
  • Due to their stem-like characteristics and immunosuppressive properties, Mesenchymal stem cells (MSCs) offer remarkable potential in regenerative medicine. Much effort has been devoted to enhancing the efficacy of MSC therapy by enhancing MSC migration. In this study, we identified deubiquitinase BRCA1-associated protein 1 (BAP1) as an inhibitor of MSC migration. Using deubiquitinase siRNA library screening based on an in vitro wound healing assay, we found that silencing BAP1 significantly augmented MSC migration. Conversely, BAP1 overexpression reduced the migration and invasion capabilities of MSCs. BAP1 depletion in MSCs upregulates ERK phosphorylation, thereby increasing the expression of the migration factor, osteopontin. Further examination revealed that BAP1 interacts with phosphorylated ERK1/2, deubiquitinating their ubiquitins, and thus attenuating the ERK signaling pathway. Overall, our study highlights the critical role of BAP1 in regulating MSC migration through its deubiquitinase activity, and suggests a novel approach to improve the therapeutic potential of MSCs in regenerative medicine.

Transcriptome profile of one-month-old lambs' granulosa cells after superstimulation

  • Wu, Yangsheng;Lin, Jiapeng;Li, Xiaolin;Han, Bing;Wang, Liqin;Liu, Mingjun;Huang, Juncheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.1
    • /
    • pp.20-33
    • /
    • 2017
  • Objective: Superstimulatory treatment of one-month-old lambs can achieve synchronous development of numerous growing follicles. However, these growing follicles cannot complete maturation and ovulation. Oocyte maturation and competence are acquired during follicular development, in which granulosa cells play an essential role. Methods: In this study, we applied RNA sequencing to analyze and compare gene expression between prepubertal and adult superstimulated follicle granulosa cells in sheep. Results: There were more than 300 genes that significantly differed in expression. Among these differently expressed genes, many extracellular matrix genes (EGF containing Fibulin Like Extracellular Matrix Protein 1, pentraxin 3, adrenomedullin, and osteopontin) were significantly down-regulated in the superstimulated follicles. Ingenuity pathway and gene ontology analyses revealed that processes of axonal guidance, cell proliferation and DNA replication were expressed at higher levels in the prepubertal follicles. Epidermal growth factor, T-Box protein 2 and beta-estradiol upstream regulator were predicted to be active in prepubertal follicles. By comparison, tumor protein P53 and let-7 were most active in adult follicles. Conclusion: These results may contribute to a better understanding of the mechanisms governing the development of granulosa cells in the growing follicle in prepubertal sheep.

Effect of implant surface microtopography by hydroxyapatite grit-blasting on adhesion, proliferation, and differentiation of osteoblast-like cell line, MG-63

  • Park, Sung-Jae;Bae, Sang-Bum;Kim, Su-Kyoung;Eom, Tae-Gwan;Song, Seung-Il
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.3
    • /
    • pp.214-224
    • /
    • 2011
  • Objective: This study examined the potential of the in vitro osteogenesis of microtopographically modified surfaces, RBM (resorbable blasting media) surfaces, which generate hydroxyapatite grit-blasting. Methods: RBM surfaces were modified hydroxyapatite grit-blasting to produce microtopographically modified surfaces and the surface morphology, roughness or elements were examined. To investigate the potential of the in vitro osteogenesis, the osteoblastic cell adhesion, proliferation, and differentiation were examined using the human osteoblast-like cell line, MG-63 cells. Osteoblastic cell proliferation was examined as a function of time. In addition, osteoblastic cell differentiation was verified using four different methods of an ALP activity assay, a mineralization assay using alizarin red-s staining, and gene expression of osteoblastic differentiation marker using RT-PCR or ELISA. Results: Osteoblastic cell adhesion, proliferation and ALP activity was elevated on the RBM surfaces compared to the machined group. The cells exhibited a high level of gene expression of the osteoblastic differentiation makers (osteonectin, type I collagen, Runx-2, osterix). imilar data was represented in the ELISA produced similar results in that the RBM surface increased the level of osteocalcin, osteopontin, TGF-beta1 and PGE2 secretion, which was known to stimulate the osteogenesis. Moreover, alizarin red-s staining revealed significantly more mineralized nodules on the RBM surfaces than the machined discs. Conclusion: RBM surfaces modified with hydroxyapatite grit-blasting stimulate the in vitro osteogenesis of MG-63 cells and may accelerate bone formation and increase bone-implant contact.

Effects of Fluid Shear Stress on 3T3-L1 Preadipocytes (유체전단응력에 의하여 3T3-L1 지방세포가 받는 영향)

  • Lee, Jeongkun;Lee, Yeong Hun;Jin, Heewon;Lee, Seohyun;Kim, Chi Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.168-174
    • /
    • 2018
  • Adipocytes affect obesity through the regulation of lipid metabolism. Physical loading is an important regulator of fat tissue. There are ongoing in vitro studies inducing mechanotransduction on 3T3-L1 preadipocytes with mechanical stimulus in order to treat obesity by inhibiting adipogenesis and provoking cell death. In this study, our goal was to suggest a new therapy for obesity by investigating whether fluid shear stress (FSS) changes transcription factors on 3T3-L1 related with adipogenesis and cell death. FSS loading was applied to 3T3-L1 preadipocytes at 1Pa and 1Hz. After loading, bright field images were taken and an immunofluorescence assay was conducted to observe actin stress fiber formation. Western blot analysis was conducted to identify the activation of the ERK pathway as well as the adipogenic factors, which including C/EBPs and $PPAR{\gamma}$. The expression of osteopontin, a protein related to inflammation in adipose tissue, and cell death related factors, Bax, Bcl-2, and Beclin, were also measured. Results showed that FSS stimulated the formation of actin stress fibers in 3T3-L1 and also that the activation of C/EBPs decreased significantly when compared with the control group. $PPAR{\gamma}$ activation in the 2 hour FSS group was lower than the 1 hour FSS group, which implied that the results were time dependent. Additionally, there were no differences in the expression of cell death factors after FSS loading. In summary, similar to other fibroblasts, the formation of actin stress fibers induced by mechanotransduction may affect the differentiation of 3T3-L1, leading to inhibition of adipogenesis and inflammation.

In vitro assay for osteoinductive activity of different demineralized freeze-dried bone allograft

  • Vaziri, Shahram;Vahabi, Surena;Torshabi, Maryam;Hematzadeh, Somayeh
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.6
    • /
    • pp.224-230
    • /
    • 2012
  • Purpose: Various bone graft materials have been used for periodontal tissue regeneration. Demineralized freeze-dried bone allograft (DFDBA) is a widely used bone substitute. The current widespread use of DFDBA is based on its potential osteoinductive ability. Due to the lack of verifiable data, the purpose of this study was to assess the osteoinductive activity of different DFDBAs in vitro. Methods: Sarcoma osteogenic (SaOS-2) cells (human osteoblast-like cells) were exposed to 8 mg/mL and 16 mg/mL concentrations of three commercial types of DFDBA: Osseo+, AlloOss, and Cenobone. The effect of these materials on cell proliferation was determined using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay. The osteoinductive ability was evaluated using alizarin red staining, and the results were confirmed by evaluating osteogenic gene expression using reverse transcription polymerase chain reaction (RT-PCR). Results: In the SaOS-2 cells, an 8 mg/mL concentration of Osseo+ and Cenobone significantly increased cell proliferation in 48 hours after exposure (P<0.001); however, in these two bone materials, the proliferation of cells was significantly decreased after 48 hours of exposure with a 16 mg/mL concentration (P<0.001). The alizarin red staining results demonstrated that the 16 mg/mL concentration of all three tested DFDBA induced complete morphologic differentiation and mineralized nodule production of the SaOS-2 cells. The RT-PCR results revealed osteopontin gene expression at a 16 mg/mL concentration of all three test groups, but not at an 8 mg/mL concentration. Conclusions: These commercial types of DFDBA are capable of decreasing proliferation and increasing osteogenic differentiation of the SaOS-2 cell line and have osteoinductive activity in vitro.

Astragalus membranaceus promotes differentiation and mineralization in human osteoblast-like SaOS-2 cells

  • Huh, Jeong-Eun;Kim, Nam-Jae;Yang, Ha-Ru;Cho, Eun-Mi;Baek, Yong-Hyeon;Choi, Do-Young;Kim, Deog-Yoon;Cho, Yoon-Je;Kim, Kang-Il;Park, Dong-Suk;Lee, Jae-Dong
    • Journal of Acupuncture Research
    • /
    • v.22 no.2
    • /
    • pp.181-190
    • /
    • 2005
  • Background & Object : The differentiation of osteoblasts controlled by various growth factors and matrix proteins expression in bone. The aim of this study was to identify the Astragalus membranaceus that may induce the osteogenic activity in human osteoblast-like SaOS-2 cells. Methods : The osteogenic activity of Astragalus membranaceus were evaluated by WST-8 assay, ALP activity, RT-PCR analysis of VEGF, OCN, OPN, Col I mRNA, and ELISA or colorimetric analysis, and mineralization by Alizarin red staining in SaOS-2 cells. Results : Astragalus membranaceus had no effect on viability of osteoblastic cells, and dose dependently increased alkaline phosphatase (ALP) activity. Astragalus membranaceus markedly increased mRNA expression for vascular endothelial growth factor (VEGF), osteocalcin (OCN), osteopontin (OPN), and type I collagen (Col 1) in SaOS-2 cells. Extracellular accumulation of proteins such as VEGF, and Col I was increased in a dose-dependent manner. Also, Astragalus membranaceus significantly induced mineralization in the culture of SaOS-2 cells. Conclusion : This study showed that Astragalus membranaceus not affect on viability, but it enhanced ALP activity, VEGF, bone matrix proteins such as OCN, OPN and Col I, and mineralization in SaOS-2 cells. These results propose that Astragalus membranaceus plays an important role in osteoblastic bone formation, and possibly lead to the development of bone-forming drug.

  • PDF

Effect of Strontium Doped Porous BCP as Bone Graft Substitutes on Osteoblast (스트론튬(Strontium)이 도핑된 다공성 BCP 뼈 이식제가 조골세포에 미치는 영향)

  • Byun, In-Seon;Sarkar, Swapan Kumar;Seo, Hyung-Seok;Lee, Byong-Taek;Song, Ho-Yeon
    • Korean Journal of Materials Research
    • /
    • v.20 no.3
    • /
    • pp.155-160
    • /
    • 2010
  • In this study, we investigated primary biocompatibility and osteogenic gene expression of porous granular BCP bone substitutes with or without strontium (Sr) doping. In vitro biocompatibility was investigated on fibroblasts like L929 cells and osteoblasts like MG-63 cells using a cell viability assay (MTT) and one cell morphological observation by SEM, respectively. MTT results showed a cell viability percent of L929 fibroblasts, which was higher in Sr-BCP granules (98-101%) than in the non-doped granules (92-96%, p < 0.05). Osteoblasts like MG-63 cells were also found to proliferate better on Sr-doped BCP granules (01-111%) than on the non-doped ones (92-99%, p < 0.05) using an MTT assay. As compared with pure BCP granules, SEM images of MG-63 cells grown on sample surfaces confirmed that cellular spreading, adhesion and proliferation were facilitated by Sr doping on BCP. Active filopodial growth of MG-63 cells was also observed on Sr-doped BCP granules. The cells on Sr-doped BCP granules were well attached and spread out. Gene expression of osteonectin, osteopontin and osteoprotegrin were also evaluated using reverse transcriptase polymerase chain reaction (RT-PCR), which showed that the mRNA phenotypes of these genes were well maintained and expressed in Sr-doped BCP granules. These results suggest that Sr doping in a porous BCP granule can potentially enhance the biocompatibility and bone ingrowth capability of BCP biomaterials.