• Title/Summary/Keyword: Osteonectin(SPARC)

Search Result 2, Processing Time 0.014 seconds

Gene Expression of Exposure to Mineral Trioxide Aggregate(MTA) on Dental Pulp Cells (Mineral Trioxide Aggregate(MTA)에 의한 치수세포의 유전자 발현변화)

  • Choi, Yu-Seok;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.1
    • /
    • pp.30-38
    • /
    • 2008
  • Dental pulp cells are assumed to possess the capacity to elaborate both bone and dentin matrix under the pathological conditions following tooth injury. The purpose of this study is to examine the effects of mineral trioxide aggregate (MTA) on various gene expression regarding dentinogenesis and cell viability assay in cultured primary human dental pulp cells. The author also examined the effects of this material on cellular alkaline phosphatase activity as a potential indicator of dentinogenesis. For gene expression on MTA, reverse transcriptase polymerase chain reaction was performed using primer sets of glyceraldehyde-3-phosphate dehydrogenase, type I collagen, alkaline phosphatase(ALP), osteonectin, and dentin sialoprotein after 2 and 4 days. Cell viability assay showed that the proportion of MTA-treated pulp cells which had been exposed for 5 days to MTA was higher than that of the control cells. Among the genes investigated in this study, ALP and osteonectin(SPARC) were increased in MTA treated group than in control. These findings suggest that this dental pulp culture system may be useful in the future as a model for studying the mechanisms underlying dentin regeneration after the treatment with MTA. Exposure to MTA material would not induce cytotoxic response in the dental pulp cells. In addition, MTA could influence the behavior of human pulp cells by increasing the ALP activity and SPARC synthesis.

  • PDF

Regulation of cementoblast differentiation and mineralization using conditioned media of odontoblast (상아모세포의 조건배지를 이용한 백악모세포의 분화와 석회화 조절)

  • Moon, Sang-Won;Kim, Hye-Sun;Song, Hyun-Jung;Choi, Hong-Kyu;Park, Jong-Tae;Kim, Heung-Joong;Jang, Hyun-Seon;Park, Joo-Cheol
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.385-396
    • /
    • 2006
  • For the regeneration of periodontal tissues, the microenvironment for new attachment of connective tissue fibers should be provided, At this point of view, cementum formation in root surface plays a key role for this new attachment. This study was performed to figure out which factor promotes differentiation of cementoblast Considering anatomical structure of tooth, we selected the cells which may affect the differentiation of cementoblast - Ameloblast, OD11&MDPC23 for odontoblasts, NIH3T3 for fibroblsts and MG63 for osteoblasts. And OCCM30 was selected for cementoblast cell line. Then, the cell lines were cultured respectively and transferred the conditioned media to OCCM30. To evaluate the result, Alizarin red S stain was proceeded for evaluation of mineralization. The subjected mRNA genes are bone sialoprotein(BSP), alkaline phosphate(ALP) , osteocalcin(OC), type I collagen(Col I), osteonectin(SPARC ; secreted protein acidic and rich in cysteine). Expression of the gene were analysed by RT-PCR, The results were as follows: 1. For alizarin red S staining, control OCCM30 didn't show any mineralized red nodules until 14 days. But red nodules started to appear from about 4 days in MDPC-OCCM30 & OD11-OCCM30. 2. For results of RT-PCR, ESP mRNAs of control-OCCM30 and others were expressed from 14 days, but in MDPC23-OCCM30 & OD11-OCCM30 from 4 days. Like this, the gene expression of MDPC23-OCCM30 & OD11-OCCM30 were detected much earlier than others. 3. For confirmation of odontoblast effect on cementoblast, conditioned media of osteoblasts(MG63) which is mineralized by producing matrix vesicles didn't affect on the mineralized nodule formation of cementoblasts(OCCM30). This suggest the possibility that cementoblast mineralization is regulated by specific factor in dentin matrix protein rather than matrix vesicles. Therefore, we proved that the dentin/odontoblast promotes differentiation/mineralization of cementoblasts. This new approach might hole promise as diverse possibilities for the regeneration of tissues after periodontal disease.