• Title/Summary/Keyword: Osteogenic activity

Search Result 152, Processing Time 0.021 seconds

Effects of Astragalus Membranaceus, Innamomum Cassia, Phellodendron Amurensis(BHH10) on MC3T3-E1 Cells Proliferation, Differntiation and Bone Mineralized Formation (MC3T3-E1 세포주에서 황기.계지.황백 처방(BHH10)의 골형성 촉진 효능 연구)

  • Lee, Mi Lim;Huh, Jeong Eun;Nam, Dong Woo;Seon, Jong In;Kang, Jung Won;Kim, Sung Hoon;Choi, Do Young;Lee, Jae Dong
    • Journal of Acupuncture Research
    • /
    • v.29 no.6
    • /
    • pp.11-21
    • /
    • 2012
  • Objectives : BHH10 is traditional medicine herb used for enhancing body resistance against various diseases. The aim of this study was to identify BHH10 extract induces osteogenic activity in human osteoblast-like MC3T3-E1 cells. Methods : MC3T3-E1, pre-osteoblast cell line, were treated with BHH10 of various concentrations($0.1{\mu}g/mL$, $1{\mu}g/mL$, $10{\mu}g/mL$). And then, the effect of BHH10 on osteoblast differentiation was examined by alkaline phosphatase(ALP) activity, von Kossa staining and RT-PCR for osteoblast differentiation markers such as osteocalcin(OCN), osteopontin(OPN). Results : BHH10 had dose-dependent effect on the viability of osteoblastic cells, and dose-dependently increased alkaline phosphatase(ALP) activity. BHH10 markedly increased mRNA expression for OCN, OPN in MC3T3-E1 cells. Also, BHH10 significantly induced mineralization in the culture of MC3T3-E1 cells. Conclusions : In conclusion, these results propose that BHH10 can play an important role in osteoblastic bone formation, osteogenesis, and may possibly lead to the development of bone-forming drugs.

The Effects of Mechanical Stress on Alkaline Phosphatase Activity of MC3T3-E1 Cells (기계적 자극이 MC3T3-EI 세포의 Alkaline Phosphatase Activity에 미치는 영향)

  • BAE, Sung-Min;KYUNG, Hee-Moon;SUNG, Jae-Hyun
    • The korean journal of orthodontics
    • /
    • v.26 no.3
    • /
    • pp.291-299
    • /
    • 1996
  • Orthodontic force is a mechanical stress controlling both of tooth movement and skeletal growth. The mechanical stress stimulate bone cells that may exert some influence on bone remodeling. The purpose of this study was to evaluate the difference in cellular activity depending on mechanical stresses such as compressive and tensile force by determining the alkaline phosphatase(ALP) activity. A clonal osteogenic cell line MC3T3-E1 was seeded into a 24-well plate($2{\times}10^4/well$). At the confluent phase, a continuous compressive hydrostatic pressure($25g/cm^2$, $300g/cm^2$) and continuous tensile hydrostatic pressure($-25g/cm^2$, $-300g/cm^2$) were applied for 4, 6, 10, 14, 18, 20 days respectively by a diaphgragm pump. At the end of the stimulation period, cell layers were prepared for ALP activity assay. The ALP activity of the compressive group increased more than that of the tensile group at same force magnitude, whereas the cells responded to a similar pattern regardless of the type of mechanical stress The ALP activity of the compressive and tensile group turned into the level of the control group as the length of time increased. These results indicated that a mechanical stress may be more effective on cellular activity during active cellular proliferation and differentiation periods. The time to achieve maximum ALP activity was delayed as the mechanical stress increased in both the compressive and the tensile group. Accordingly, the magnitude of the stress rather than the type of mechanical stress may have more influence on cellular activity.

  • PDF

Preparation and Characterization of Natural Material Extracted from Germinated Brown Rice

  • Lim, Ki-Taek;Choi, Jeong Moon;Lim, Won-Chul;Kim, Jangho;Cho, Hong-Yon;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.3
    • /
    • pp.235-243
    • /
    • 2014
  • Purpose: The aim of this study was to prepare and evaluate a natural material extracted from germinated brown rice (GBR). Herein, we evaluated whether the natural material could positively activate the biological effects seen during bone formation, including enhancement of metabolic activity, osteogenesis, and the expression of vascular endothelial growth factor (VEGF), one of the growth factors in human osteoblast-like cells. Methods: The natural material was created by a hot water extraction process after being soaked for 2~3 days in tap water and dried at $50^{\circ}C$. The material was characterized using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier transformed infrared (FTIR) spectroscopy. The biological behaviors of the material were also investigated; we performed tests to assess cell cytotoxicity, metabolic activity, osteogenic markers related to bone formation, and VEGF. Results: The EDX, XRD, and FTIR results for the natural material indicated the presence of organic compounds. The natural material caused positive increases in cell metabolic activity and mineralized bone formation without cytotoxicity. The protein levels in the extract for the $6.25{\mu}g/mL$, $12.25{\mu}g/mL$, $25{\mu}g/mL$, $50{\mu}g/mL$, and $100{\mu}g/mL$ groups were significantly different from that for the control. Conclusions: The GBR-based natural material was easy to prepare and had characteristics of a potential biomaterial. The biocompatibility of this natural material was evaluated using in vitro techniques; our findings indicate that this novel material is promising for agricultural and biological applications.

The effects of chitosan on the human periodontal ligament fibroblasts in vitro (키토산이 치주인대 섬유아세포에 미치는 영향)

  • Paik, Jeong-Won;Lee, Hyun-jung;Yoo, Yun-Jung;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.4
    • /
    • pp.823-832
    • /
    • 2001
  • Periodontal therapy has dealt primarily with attempts at arresting progression of disease, however, more recent techniques have focused on regenerating the periodontal ligament having the capacity to regenerate the periodontium. The effect of chitosan(poly-N-acetyl glucosaminoglycan), a carbohydrate biopolymer extracted from chitin, on periodontal ligament regeneration is of particular interest. The purpose of this study was to evaluate the effect of chitosan on the human periodontal ligament fibroblasts(hPDLFs) in vitro, with special focus on their proliferative properties by M'IT assay, the synthesis of type I collagen by reverse transcription-polymerase chain reaction(RT-PCR) and the activity of alkaline phosphatase(ALP). Fibroblast populations were obtained from individuals with a healthy periodontium and cultured with ${\alpha}MEM$ as the control group. The experimental groups were cultured with chitosan in concentration of 0.01,0.1, 1,2mg/ml. The results are as follows; 1. Chitosan-induced proliferative responses of hPDLFs reached a plateau at the concentration of O.lmg/ml(p<0.05). 2. When hPDLFs were stimulated with 0.lmg/ml chitosan, mRNA expression of type I collagen was up-regulated. 3. When hPDLFs were stimulated with 0.lmg/ml chitosan, ALP activity was significantly up-regulated(p<0.05). In summary, chitosan(0.lmg/ml) enhanced the type I collagen synthesis in the early stage, and afterwards, facilitated differentiation into osteogenic cells. The results of this in vitro experiment suggest that chitosan potentiates the differentiation of osteoprogenitor cells and may facilitate the formation of bone.

  • PDF

Surface characteristics and bioactivity of an anodized titanium surface

  • Kim, Kyul;Lee, Bo-Ah;Piao, Xing-Hui;Chung, Hyun-Ju;Kim, Young-Joon
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.4
    • /
    • pp.198-205
    • /
    • 2013
  • Purpose: The aim of this study was to evaluate the surface properties and biological response of an anodized titanium surface by cell proliferation and alkaline phosphatase activity analysis. Methods: Commercial pure titanium (Ti) disks were prepared. The samples were divided into an untreated machined Ti group and anodized Ti group. The anodization of cp-Ti was formed using a constant voltage of 270 V for 60 seconds. The surface properties were evaluated using scanning electron microscopy, X-ray photoelectron spectroscopy, and an image analyzing microscope. The surface roughness was evaluated by atomic force microscopy and a profilometer. The contact angle and surface energy were analyzed. Cell adhesion, cell proliferation, and alkaline phosphatase activity were evaluated using mouse $MC_3T_3-E_1$ cells. Results: The anodized Ti group had a more porous and thicker layer on its surface. The surface roughness of the two groups measured by the profilometer showed no significant difference (P>0.001). The anodized Ti dioxide ($TiO_2$) surface exhibited better corrosion resistance and showed a significantly lower contact angle than the machined Ti surface (P>0.001). Although there was no significant difference in the cell viability between the two groups (P>0.001), the anodized $TiO_2$ surface showed significantly enhanced alkaline phosphatase activity (P<0.001). Conclusions: These results suggest that the surface modification of Ti by anodic oxidation improved the osteogenic response of the osteoblast cells.

In Vitro and In Vivo Bone-Forming Effect of a Low-Molecular-Weight Collagen Peptide

  • Jae Min Hwang;Mun-Hoe Lee;Yuri Kwon;Hee-Chul Chung;Do-Un Kim;Jin-Hee Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.415-424
    • /
    • 2024
  • This study reveals that low-molecular-weight collagen peptide (LMWCP) can stimulate the differentiation and the mineralization of MC3T3-E1 cells in vitro and attenuate the bone remodeling process in ovariectomized (OVX) Sprague-Dawley rats in vivo. Moreover, the assessed LMWCP increased the activity of alkaline phosphatase (ALP), synthesis of collagen, and mineralization in MC3T3-E1 cells. Additionally, mRNA levels of bone metabolism-related factors such as the collagen type I alpha 1 chain, osteocalcin (OCN), osterix, bone sialoprotein, and the Runt family-associated transcription factor 2 were increased in cells treated with 1,000 ㎍/ml of LMWCP. Furthermore, we demonstrated that critical bone morphometric parameters exhibited significant differences between the LMWCP (400 mg/kg)-receiving and vehicle-treated rat groups. Moreover, the expression of type I collagen and the activity of ALP were found to be higher in both the femur and lumbar vertebrae of OVX rats treated with LMWCP. Finally, the administration of LMWCP managed to alleviate osteogenic parameters such as the ALP activity and the levels of the bone alkaline phosphatase, the OCN, and the procollagen type 1 N-terminal propeptide in OVX rats. Thus, our findings suggest that LMWCP is a promising candidate for the development of food-based prevention strategies against osteoporosis.

EVALUATION OF OSTEOGENIC ACTIVITY AND MINERALIZATION OF CULTURED HUMAN DENTAL PAPILLA-DERIVED CELLS (배양된 치유두 유래세포의 조골활성 및 골기질 형성의 평가)

  • Park, Bong-Wook;Byun, June-Ho;Choi, Mun-Jeoung;Hah, Young-Sool;Kim, Deok-Ryong;Cho, Yeong-Cheol;Sung, Iel-Yong;Kim, Jong-Ryoul
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.29 no.4
    • /
    • pp.279-288
    • /
    • 2007
  • In the present study, we focused on stem cells in the dental papilla of the tooth germ. The tooth germ, sometimes called the tooth bud, is the primordial structure from which a tooth is formed. The tooth germ consists of the enamel organ, the dental papilla, and the dental follicle. The dental papilla lies below a cellular aggregation of the enamel organ. Mesenchymal cells within the dental papilla are responsible for formation of dentin and pulp of a tooth. Tooth germ disappears as a tooth is formed, but that of a third molar stays in the jawbone of a human until the age of 10 to 16, because third molars grow slowly. Impacted third molar tooth germs from young adults are sometimes extracted for orthodontic treatment. In the present study, we evaluated the osteogenic activity and mineralization of cultured human dental papilla-derived cells. Dental papillas were harvested from mandible during surgical extraction of lower impacted third molar from 3 patients aged 13-15 years. After passage 3, the dental papilla-derived cells were trypsinized and subsequently suspended in the osteogenic induction DMEM medium supplemented with 10% fetal bovine serum, 50 g/ml L-ascorbic acid 2-phosphate, 10 nM dexamethasone and 10 mM -glycerophosphate at a density of $1\;{\times}10^6\;cells/dish$ in a 100-mm culture dish. The dental papilla-derived cells were then cultured for 6 weeks and the medium was changes every 3 days during the incubation period. Dental papilla-derived cells showed positive alkaline phosphatase (ALP) staining during 42 days of culture period. The formation of ALP stain showed its maximal manifestation at day 7 of culture period, then decreased in intensity during the culture period. ALP mRNA level was largely elevated at 1 weeks and gradually decreased with culture time. Osteocalcin mRNA expression appeared at day 14 in culture, after that its expression continuously increased in a time-dependent manner up to day 28. The expression remained constant thereafter. Runx2 expression appeared at day 7 with no detection thereafter. Von Kossa-positive mineralization nodules were first present at day 14 in culture followed by an increased number of positive nodules during the entire duration of the culture period. Osteocalcin secretion was detectable in the culture medium from 1 week. The secretion of osteocalcin from dental papilla-derived cells into the medium greatly increased after 3 weeks although it showed a shallow increase by then. In conclusion, our study showed that cultured human dental papilla-derived cells differentiated into active osteoblastic cells that were involved in synthesis of bone matrix and the subsequent mineralization of the matrix.

An Analysis for Effects of Stain Family Drugs on Osteogenic Differentiation using Human Periosteum-derived Mesenchymal Stem Cells (스타틴(statin) 약물이 성체줄기세포의 골분화에 미치는 영향)

  • Moon, Dong Kyu;Yun, Jeong-Won;Kim, Bo Gyu;Lee, A Ram;Moon, Sun Young;Byun, June-Ho;Hwang, Sun-Chul;Woo, Dong Kyun
    • Journal of Life Science
    • /
    • v.29 no.12
    • /
    • pp.1337-1344
    • /
    • 2019
  • Osteoporosis is characterized by a reduction in bone mass and typically manifests as an increase in fractures. Because this disease is common in elderly populations and lifespans are rapidly increasing, the incidence of osteoporosis has also grown. Most drugs currently used for osteoporosis treatment target osteoclasts in the bone tissue to prevent absorption. However, these medications also cause certain side effects and, furthermore, cannot increase bone mass. Thus, in order to control osteoporosis, regenerative medicine that utilizes adult stem cells and osteoblasts has been extensively studied. Statins, also known as 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, are cholesterol-lowering drugs that have been widely prescribed for cardiovascular diseases. Interestingly, recent studies have reported the beneficial effects of various statins on bone formation via the activation of osteoblasts. Thus, the current study investigated the effects of seven statin-family drugs on osteoblast activity during osteogenic differentiation using adult stem cells from human periosteal tissue. Specifically, statin effects on alkaline phosphatase activity, an early marker of bone cell differentiation, and on calcium deposit, a late marker of bone cell differentiation, were assessed. The results demonstrate that some statins (for example, pitavastatin and pravastatin) have a weak but positive effect on bone formation, and the findings therefore suggest that statin treatments can be a novel modulator for osteogenic differentiation and regenerative medicine using periosteal stem cells.

High concentration of calcium represses osteoblast differentiation in C2C12 cells

  • Lee, Ye Jin;Han, Younho
    • International Journal of Oral Biology
    • /
    • v.45 no.4
    • /
    • pp.162-168
    • /
    • 2020
  • Calcium is the most abundant stored mineral in the human body and is especially vital for bone health; thus, calcium deficiency can cause bone-related diseases, such as osteopenia and osteoporosis. However, a high concentration of serum calcium, which is commonly known as hypercalcemia, can also lead to weakened bones and, in severe cases, osteosarcoma. Therefore, it is necessary to maintain the concentration of calcium that is appropriate for bone biology. In the present study, we aimed to elucidate the effects of high concentration of calcium, approximately 2 folds the normal calcium level, on osteoblast differentiation. The CaCl2 treatment showed dose-dependent suppression of the alkaline phosphatase activity and mineralized nodule formation. Calcium showed cytotoxicity at an extremely high concentration, but a moderately high concentration of calcium that results in inhibitory effects to osteoblast differentiation showed no signs of cytotoxicity. We also confirmed that the CaCl2 treatment repressed the mRNA expression and protein abundance of various osteogenic genes and transcriptional factors. Considered together, these results indicate that a high concentration of calcium negatively regulates the osteoblast differentiation of C2C12 cells.

Fermented sea tangle (Laminaria japonica Aresch) Accelerates Osteoblast Differentiation in murine osteoblastic MC3T3-E1 Cells (MC3T3-E1 골아세포에서 발효 다시마 추출물에 의한 조골세포 분화의 촉진)

  • Nara Jeong;Yung Hyun Choi
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.24-32
    • /
    • 2023
  • The Laminaria japonica Aresch (Sea tangle) belongs to the brown algae and has a long history as a food material in Asia, including Korea. Recent studies have found that the fermented Sea tangle extract (FST) inhibited the differentiation of osteoclasts and protected osteoblasts from oxidative damage. This study aims to explore the possibility that FST can induce the differentiation of osteoblasts and identify the responsible mechanism. According to our results, FST induced differentiation into osteogenic cells in the presence of osteoblastic MC3T3-E1 cells under non-toxic conditions.. This finding was confirmed by phalloidin staining, increased alkaline phosphatase activity, and calcium deposition. Additionally, it was found that this process was achieved by increasing the expression of key factors involved in osteoblast differentiation, such as runt-related transcription factor-2, osterix, β-catenin, and bone morphogenetic protein-2. Moreover, FST increased autophagy, which may contribute to the maintenance of the bone formation homeostasis, and is associated with the activation of the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase signaling pathways. Although further research about the bioactive substances contained in FST and the tests of their efficacy are required, the results of this study indicate that FST has incredible applicability as a functional material for maintaining the bone homeostasis.