• Title/Summary/Keyword: Osteoclast differentiation factor

Search Result 118, Processing Time 0.025 seconds

RANK Signaling Pathways and Key Molecules Inducing Osteoclast Differentiation

  • Lee, Na Kyung
    • Biomedical Science Letters
    • /
    • v.23 no.4
    • /
    • pp.295-302
    • /
    • 2017
  • Mononuclear osteoclast precursors derived from hematopoietic progenitors fuse together and then become multinucleated mature osteoclasts by macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL). Especially, the binding of RANKL to its receptor RANK provides key signals for osteoclast differentiation and bone-resorbing function. RANK transduces intracellular signals by recruiting adaptor molecules such as TNFR-associated factors (TRAFs), which then activate mitogen activated protein kinases (MAPKs), Src/PI3K/Akt pathway, nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and finally amplify NFATc1 activation for the transcription and activation of osteoclast marker genes. This review will briefly describe RANKL-RANK signaling pathways and key molecules critical for osteoclast differentiation.

Osteoclast Differentiation Factor Engages the PI 3-kinase, p38, and ERK pathways for Avian Osteoclast Differentiation

  • Kim, Hong-Hee;Kim, Hyun-Man;Kwack, Kyu-Bum;Kim, Si-Wouk;Lee, Zang-Hee
    • BMB Reports
    • /
    • v.34 no.5
    • /
    • pp.421-427
    • /
    • 2001
  • Osteoclasts, cells primarily involved in bone resorption, originate from the hematopoietic precursor cells of the monocyte/macrophage lineage and differentiate into multinucleated mature forms. We developed an in vitro osteoclast culture system using embryonic chicken bone marrow cells. This culture system can be utilized in studies on the differentiation and function of osteoclasts. Phosphatidylinositol 3-kinase (PI3-kinase) and mitogen-activated protein kinases (MAPKs) have been implicated in diverse cellular functions including proliferation, migration, and survival. Using the developed avian osteoclast culture system, we examined the involvement of these kinases in osteoclast differentiation by employing specific inhibitors of the kinases. We Found that the inhibition of the PI 3-kinase, p38, or ERK interfered with osteoclast formation, suggesting that the signaling pathways that involve these molecules participate in the process of chicken osteoclast differentiation.

  • PDF

Tusc2/Fus1 regulates osteoclast differentiation through NF-κB and NFATc1

  • Kim, Inyoung;Kim, Jung Ha;Kim, Kabsun;Seong, Semun;Kim, Nacksung
    • BMB Reports
    • /
    • v.50 no.9
    • /
    • pp.454-459
    • /
    • 2017
  • Tumor suppressor candidate 2 (Tusc2, also known as Fus1) regulates calcium signaling, and $Ca^{2+}$-dependent nuclear factor of activated T-cells (NFAT) and nuclear factor kappa B ($NF-{\kappa}B$) pathways, which play roles in osteoclast differentiation. However, the role of Tusc2 in osteoclasts remains unknown. Here, we report that Tusc2 positively regulates the differentiation of osteoclasts. Overexpression of Tusc2 in osteoclast precursor cells enhanced receptor activator of nuclear factor ${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation. In contrast, small interfering RNA-mediated knockdown of Tusc2 strongly inhibited osteoclast differentiation. In addition, Tusc2 induced the activation of RANKL-mediated $NF-{\kappa}B$ and calcium/calmodulin-dependent kinase IV (CaMKIV)/cAMP-response element (CRE)-binding protein CREB signaling cascades. Taken together, these results suggest that Tusc2 acts as a positive regulator of RANKL-mediated osteoclast differentiation.

Effects of Pyrola japonica Extracts on Osteoclast Differentiation and Bone Resorption (녹제초 추출물이 파골세포 분화 및 골 흡수에 미치는 영향)

  • Park, Jung-Sik;Lim, Hyung-Ho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.29 no.2
    • /
    • pp.135-147
    • /
    • 2019
  • Objectives This study was performed to evaluate the effect of Pyrola japonica extract (NJ) and its principal constituent, homoarbutin (HA) on osteoclast differentiation and gene expression and bone resorption. The osteoclastogenesis and gene expression were determined in receptor activator of nuclear factor kappa B ligand (RANKL)-stimulated RAW264.7 cell. Methods In order to evaluate the effect of HA extracted from NJ on bone resorption, osteoclasts were used to be differentiated and formed by stimulating RAW264.7 cells with RANKL. Tartarate-resistant acid phosphatase (TRAP) (+) polynuclear osteoclast formation ability was evaluated, and differentiation control genes including cathepsin K, matrix metalloproteinases-9 (MMP-9), and TRAP in osteoclast differentiation were analyzed by real-time polymerase chain reaction (PCR). Immunoblotting was performed to measure the effect of mitogen-activated protein kinase (MAPK) factors on bone resorption, and the effect of osteoclasts on osteoclast differentiation was measured. Results Both NJ and high concentration of HA blocked RANKL-stimulated differentiation from RAW264.7 cell to TRAP-positive multinucleated cells. NJ reduced RANKL-induced expression of TRAP, cathepsin K. Both NJ and high concentration of HA inhibited RANKL-mediated expression of MMP-9, nuclear factor of activated T-cells, cytoplasmic 1, and cellular Jun-fos. NJ suppressed RANKL-stimulated expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase, tumor necrosis factor-alpha, and levels of interleukins. Both NJ and HA decreased bone resorption in osteoclast-induced bone pit formation model. Conclusions These results suggest that NJ and HA blocked bone resorption by decreasing RANKL-mediated osteoclastogenesis through down-regulation of genes for osteoclast differentiation.

Leonurus sibiricus L. ethanol extract promotes osteoblast differentiation and inhibits osteoclast formation

  • Jae‑Hyun Kim;Minsun Kim;Hyuk‑Sang Jung;Youngjoo Sohn
    • International Journal of Molecular Medicine
    • /
    • v.44 no.3
    • /
    • pp.913-926
    • /
    • 2019
  • Leonurus sibiricus L. (LS) is a medicinal plant used in East Asia, Europe and the USA. LS is primarily used in the treatment of gynecological diseases, and recent studies have demonstrated that it exerts anti-inflammatory and antioxidant effects. To the best of our knowledge, the present study demonstrated for the first time that LS may promote osteoblast differentiation and suppress osteoclast differentiation in vitro, and that it inhibited lipopolysaccharide (LPS)-induced bone loss in a mouse model. LS was observed to promote the osteoblast differentiation of MC3T3-E1 cells and upregulate the expression of runt-related transcription factor 2 (RUNX2), a key gene involved in osteoblast differentiation. This resulted in the induction of the expression of various osteogenic genes, including alkaline phosphatase (ALP), osteonectin (OSN), osteopontin (OPN), type I collagen (COL1) and bone sialoprotein (BSP). LS was also observed to inhibit osteoclast differentiation and bone resorption. The expression levels of nuclear factor of activated T-cells 1 (NFATc1) and c-Fos were inhibited following LS treatment. NFATc1 and c-Fos are key markers of osteoclast differentiation that inhibit receptor activator of nuclear factor-κB ligand (RANKL)-induced mitogen-activated protein kinase (MAPKs) and nuclear factor (NF)-κB. As a result, LS suppressed the expression of osteoclast-associated genes, such as matrix metallopeptidase-9 (MMP-9), cathepsin K (Ctsk), tartrate-resistant acid phosphatase (TRAP), osteoclast-associated immunoglobulin-like receptor (OSCAR), c-src, c-myc, osteoclast stimulatory transmembrane protein (OC-STAMP) and ATPase H+ transporting V0 subunit d2 (ATP6v0d2). Consistent with the in vitro results, LS inhibited the reduction in bone mineral density and the bone volume/total volume ratio in a mouse model of LPS-induced osteoporosis. These results suggest that LS may be a valuable agent for the treatment of osteoporosis and additional bone metabolic diseases.

The IRF2BP2-KLF2 axis regulates osteoclast and osteoblast differentiation

  • Kim, Inyoung;Kim, Jung Ha;Kim, Kabsun;Seong, Semun;Kim, Nacksung
    • BMB Reports
    • /
    • v.52 no.7
    • /
    • pp.469-474
    • /
    • 2019
  • Kruppel-like factor 2 (KLF2) has been implicated in the regulation of cell proliferation, differentiation, and survival in a variety of cells. Recently, it has been reported that KLF2 regulates the p65-mediated transactivation of $NF-{\kappa}B$. Although the $NF-{\kappa}B$ pathway plays an important role in the differentiation of osteoclasts and osteoblasts, the role of KLF2 in these bone cells has not yet been fully elucidated. In this study, we demonstrated that KLF2 regulates osteoclast and osteoblast differentiation. The overexpression of KLF2 in osteoclast precursor cells inhibited osteoclast differentiation by downregulating c-Fos, NFATc1, and TRAP expression, while KLF2 overexpression in osteoblasts enhanced osteoblast differentiation and function by upregulating Runx2, ALP, and BSP expression. Conversely, the downregulation of KLF2 with KLF2-specific siRNA increased osteoclast differentiation and inhibited osteoblast differentiation. Moreover, the overexpression of interferon regulatory protein 2-binding protein 2 (IRF2BP2), a regulator of KLF2, suppressed osteoclast differentiation and enhanced osteoblast differentiation and function. These effects were reversed by downregulating KLF2. Collectively, our data provide new insights and evidence to suggest that the IRF2BP2/KLF2 axis mediates osteoclast and osteoblast differentiation, thereby affecting bone homeostasis.

Effect of TGF-${\beta}1$ on Osteoclast Differentiation

  • Park, Su-Jin;Ko, Jea-Seung;Kim, Hyun-Man
    • International Journal of Oral Biology
    • /
    • v.30 no.4
    • /
    • pp.135-141
    • /
    • 2005
  • Although it has been known that TGF-${\beta}1$ acts as a crucial cofactor in osteoclast differentiation, its mode of action is still unclear. In the present study, we studied the effect of TGF-${\beta}1$ on the differentiation of osteoclast depending on the developmental stages. Murine bone marrow cells were induced to differentiate into mature osteoclasts in the presence of receptor activator of NF-${\kappa}B$ ligand (RANKL) and macrophage colony stimulating factor (M-CSF). In the early stage of the differentiation TRAP(-) mononuclear precursor cells were obtained from nonadherent M-CSF dependent bone marrow cells, which further differentiated into mature osteoclasts. TGF-${\beta}1$ stimulated osteoclast differentiation, which was stronger when cells were stimulated by TGF-${\beta}1$ in the early stage than the later differentiation. TGF-${\beta}1$ increased the expression of RANK and synergistically stimulated RANKL-induced activation of NF-${\kappa}B$ MAP kinase in TRAP(-) mononuclear precursor cells. These results suggest that activation of osteoclast differentiation by TGF-${\beta}1$ may be ascribed to the both increased expression and activation of RANK in the osteoclast differentiation, especially in the early stage of differentiation.

Transforming Growth Factor β1/Smad4 Signaling Affects Osteoclast Differentiation via Regulation of miR-155 Expression

  • Zhao, Hongying;Zhang, Jun;Shao, Haiyu;Liu, Jianwen;Jin, Mengran;Chen, Jinping;Huang, Yazeng
    • Molecules and Cells
    • /
    • v.40 no.3
    • /
    • pp.211-221
    • /
    • 2017
  • Transforming growth factor ${\beta}1$ $(TGF{\beta}1)/Smad4$ signaling plays a pivotal role in maintenance of the dynamic balance between bone formation and resorption. The microRNA miR-155 has been reported to exert a significant role in the differentiation of macrophage and dendritic cells. The goal of this study was to determine whether miR-155 regulates osteoclast differentiation through $TGF{\beta}1/Smad4$ signaling. Here, we present that $TGF{\beta}1$ elevated miR-155 levels during osteoclast differentiation through the stimulation of M-CSF and RANKL. Additionally, we found that silencing Smad4 attenuated the upregulation of miR-155 induced by $TGF{\beta}1$. The results of luciferase reporter experiments and ChIP assays demonstrated that $TGF{\beta}1$ promoted the binding of Smad4 to the miR-155 promoter at a site located in 454 bp from the transcription start site in vivo, further verifying that miR-155 is a transcriptional target of the $TGF{\beta}1/Smad4$ pathway. Subsequently, TRAP staining and qRT-PCR analysis revealed that silencing Smad4 impaired the $TGF{\beta}1$-mediated inhibition on osteoclast differentiation. Finally, we found that miR-155 may target SOCS1 and MITF to suppress osteoclast differentiation. Taken together, we provide the first evidence that $TGF{\beta}1/Smad4$ signaling affects osteoclast differentiation by regulation of miR-155 expression and the use of miR-155 as a potential therapeutic target for osteoclast-related diseases shows great promise.

Inhibitory Effect of Paeoniae Radix Alba Ethanol Extract on Osteoclast Differentiation and Formation (백작약 에탄올 추출물의 파골세포 분화 및 생성 억제 작용)

  • Park, Bora;Park, Geun Ha;Gu, Dong Ryun;Ko, Wonmin;Kim, Youn-Chul;Lee, Seoung Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.51-57
    • /
    • 2015
  • Bone destruction is a pathological symptom of some chronic inflammatory diseases, such as rheumatoid arthritis and periodontitis. Inflammation-induced bone loss of these diseases results from increased number and activity of osteoclasts. Paeoniae Radix Alba has been used in korean traditional medicine to treat disease including inflammation, gynecopathy and various pain. However, these effects have not been tested on osteoclasts, the bone resorbing cells that regulate bone metabolism. Here, we investigated the effects of Paeoniae Radix Alba ethanol extract (PRAE) on receptor activator of nuclear factor-kappa B ligand (RANKL)-mediated osteoclast differentiation and formation. Osteoclast differentiation and formation were measured by tartrate resistant acidic phosphatase (TRAP) staining and TRAP solution assay. The treatment of PRAE on bone marrow derived macrophages (BMMs), which is known as osteoclast precursor cells, inhibited osteoclast differentiation and formation in a dose-dependent manner. In addition, the expression of osteoclast differentiation marker genes was suppressed by PRAE treatment. This inhibitory effect of PRAE resulted from significant repression of c-Fos expression, and subsequent reduction of NFATc1 expression which was previously reported as a master transcription factor for osteoclastogenesis in vitro and in vivo. These results demonstrate that PRAE negatively regulates osteoclast differentiation and formation and suggest that PRAE can be used as a potent preventive or therapeutic candidate for various bone diseases, such as postmenopausal osteoporosis, periodontitis and rheumatoid arthritis.

Effects of Gardeniae Jasminoides on RANKL-induced Osteoclastogenesis and Bone Resorption (치자 추출물이 RANKL 유도 파골세포 형성 및 골 흡수에 미치는 영향)

  • Choi, You-kyung;Hwang, Gwi-seo
    • The Journal of Internal Korean Medicine
    • /
    • v.38 no.6
    • /
    • pp.1035-1048
    • /
    • 2017
  • Objectives: This study was performed to investigate the effects of Gardenia jasminoides extract (GJ) on osteoclast differentiation and bone resorption in vitro. Methods: To investigate the effect of GJ on osteoclast differentiation, the mouse leukemic myeloid cell line RAW 264.7 was stimulated by RANKL (receptor activator of nuclear factor kB ligand). Osteoclast differentiation was measured by counting TRAP (+) MNC in the presence of RANKL. To elucidate the mechanism of the inhibitory effect of GJ on osteoclast differentiation, gene expression of TRAP, Cathepsin K, MMP-9, NFATc1, c-Fos, MITF, DC-STAMP, CTR, OC-STAMP and Atp6v0d2 was measured using reverse transcription-PCR (RT-PCR). Bone resorption was measured using the bone pit formation assay. Results: GJ decreased the number of TRAP (+) MNCs in the presence of RANKL. GJ inhibited the expression of cathepsin K, MMP-9, TRAP, MITF, NFATc1, c-Fos, iNON, OC-STAMP, Atp6v0d2, and DC-STAMP in the osteoclast, and inhibited bone pit formation in vitro. Conclusions: The results suggest that GJ has inhibitory effects on bone resorption resulting from inhibition of osteoclast differentiation and gene expression.