• Title/Summary/Keyword: Osseointegrated implant

Search Result 130, Processing Time 0.024 seconds

3-DIMENSIONAL FINITE ELEMENT ANALYSIS ON THE INFRAOCCLUSION OF FIXED IMPLANT PROSTHESIS FOR PARTIAL EDENTULISM (부분 무치악의 고정성 임플랜트 보철의 저위교합에 관한 3차원 유한요소법적 연구)

  • Kim, In-Seob;Choi, Choong-Kug;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.3
    • /
    • pp.632-649
    • /
    • 1996
  • The purpose of this study was to examine, by the method of 3-dimentional finite element analysis. how infraocclusion affected the stress distribution in surrounding bone and osseointegrated prosthesis. The 3-dimentional finite element mandibular models were made, in which the first and second molars were removed and the two osseointegrated implants were placed in the first and second molar sites and implant supported fixed prostheses were constructed. Analysis of equivalent stress and displacement induced by strong occlusion or infraocclusion was performed under vertical or inclined distributed loads. The results were as follows; 1. Under vertical load of 50N or 500N, the model in which infraocclusion had not been allowed showed greater stress on implants and the supporting bone than on natural teeth. 2. In the model in which infraocclusion of $30{\mu}m$ had been allowed, implant-prosthesis on the molars had no contact with opposing teeth under vertical load of 50N, However with the same allowed infraocclusion and the model under vertical load of 500N, implant prosthesis on the second molar had contact with opposing teeth, and stress distribution occured properly on natural teeth and implants. 3. Under $45^{\circ}$ inclined load, the model in which infraocclusion had not been allowed showed greater stress on implants and the supporting bone than on natural teeth. There was greater stress in the case of $45^{\circ}$ inclined load than in the case of vertical load. 4. Under $45^{\circ}$ inclined load of 50N or 500N, the model in which infraocclusion of $30{\mu}m$, had been allowed showed no occlusal contact on the implants and occlusal contact on the natural teeth. 5. In partially edentulous cases with implant supported prosthesis, we can prevent excessive load on implants by allowing infraocclusion.

  • PDF

A Study on Stress Distribution in the Osseointegrated IMPLANT using Finite Element Method (유한요소법을 이용한 치아 골육착성 IMPLANT의 응력분포에 관한 연구)

  • 김방원;이기수;조혜원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.540-545
    • /
    • 1997
  • This paper is to evaluate the stress distibution and displacements around the single implant restoration in dentisry. The computer simulation technique using FEM was applied to the analysis, and four londing inclination were studied: verical(0 .deg.),15 .deg.,30 .deg.,45 .deg. with respect to implant axis. The magnitudes of occlusal force were 100N, 200N, 300N, 400N, and 500N. The computed result shows that the stress on a single implant restoration increases as the load or the inclined angel increases, and that the change in loading inclination has a greater effect on the stress distribution than that of the load magnitude.

  • PDF

AN EXPERIMENTAL STUDY ON THE OSSEOINTEGRATION OF THE TI-6AL-4V BEAD COATING IMPLANTS (Ti-6Al-4V 비드코팅 임프란트 시제품의 골유착에 대한 실험적 연구)

  • Woo, Jin-Oh;Park, Bong-Wook;Byun, June-Ho;Kim, Seung-Eon;Kim, Gyoo-Cheon;Park, Bong-Soo;Kim, Jong-Ryoul
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.1
    • /
    • pp.52-59
    • /
    • 2008
  • The geometric design of an implant surface may play an important role in affecting early osseointegration. It is well known that the porous surfaced implant had much benefits for the osseointegration and the early stability of implant. However, the porous surfaced implant had weakness from the transgingival contamitants, and it resulted in alveolar bone loss. The other problem identified with porous surface implant is the loss of physical properties resulting from the bead sintering process. In this study, we developed the new bead coating implant to overcome the disadvantages of porous surfaced implant. Ti-6Al-4V beads were supplied from STARMET (USA). The beads were prepared by a plasma rotating electrode process (PREP) and had a nearly spherical shape with a diameter of 75-150 ${\mu}m$. Two types of titanium implants were supplied by KJ Meditech (Korea). One is an external hexa system (External type) and the other is an internal system with threads (Internal type). The implants were pasted with beads using polyvinylalcohol solution as a binder, and then sintered at 1250 $^{\circ}C$ for 2 hours in vacuum of $10^{-5}$ torr. The resulting porous structure was 400-500 ${\mu}m$ thick and consisted of three to four bead layers bonded to each other and the implant. The pore size was in the range of 50-150 ${\mu}m$ and the porosity was 30-40 % in volume. The aim of this study was to evaluate the osseointegration of the newly developed dental implant. The experimental implants (n=16) were inserted in the unilateral femur of 4 mongrel dogs. All animals were killed at 8 weeks after implantation, and samples were harvested for hitological examination. All bead coated porous implants were successfully osseointegrated with peripheral bone. The average bone-implant contact ratios were 84.6 % (External type) and 81.5 % (Internal type). In the modified Goldner's trichrome staining, new generated mature bones were observed at the implant interface at 8 weeks after implantation. Although, further studies are required, we could conclude that the newly developed vacuum sintered Ti-6Al-4V bead coating implant was strong enough to resist the implant insertion force, and it was easily osseointegrated with peripheral bone.

Biomechanical Complications : Fracture and Screw loosening (Biomechanical Complications : 파절과 나사풀림)

  • Kim, Tae in
    • The Journal of the Korean dental association
    • /
    • v.53 no.5
    • /
    • pp.307-317
    • /
    • 2015
  • Although the long-term success of osseointegrated endosseous implants for the support of fixed dental prostheses has been reported, the increasingly widespread use of implant-supported prostheses has led to problems associated with their structural integrity. The most common biomechanical complications observed in dental implant treatment are fracture and screw loosening. The nature of loosening or fracture of dental implant components is complex, since it involves fatigue, fitness, and varied chewing patterns and loads. To assess the service life of the components of the prosthetic system, a knowledge of the loads transmitted through the system is necessary. Design of the final restoration and occlusion in relation to the geometry of a prosthetic restoration has a great influence on the mechanical loading of the implant. It is proposed that control of force in oral cavity may play a larger role in failures than previously believed. Based on theoretic consideration and clinical experiences with dental implant, this article gives simple guidelines for controlling these loads.

The importance of SPT(Supportive Periodontal Therapy) for prevention of peri-implant disease (임상가를 위한 특집 1 - Peri-implant disease를 방지하기 위한 Supportive Periodontal Therapy(SPT)의 중요성)

  • Park, Su Jung
    • The Journal of the Korean dental association
    • /
    • v.51 no.12
    • /
    • pp.630-636
    • /
    • 2013
  • During the past decade, the use of osseointegrated implants as a foundation for prosthetic replacement of missing teeth has become highly predictable and successful. SPT(Supportive Periodontal Therapy) identified as regular visits to the therapist for periodontal control and maintenance in a well-organized scheme, the number of appointments per year following a pre-designed subject-tooth/implant-site risk assessment method. Peri-implant disease was a frequent finding in subjects having natural healthy dentition and in subjects without periodontitis. Supportive periodontal program were found to be strongly related to implant survival. This study demonstrates that regular maintenance reduces the risk for peri-implant inflammation significantly as compared with irregular maintenance. This underlines the value of the SPT in enhancing the long-term outcomes of implant therapy, particularly in subjects affected by periodontitis, in order to control reinfection and limit biological complications. It is highly recommended to maintain implant patients under a strict supportive periodontal treatment protocol that might contribute to implant survival, and regular maintenance reduces the risk for periimplant inflammation significantly as compared with irregular maintenance. Ideally, patients may be informed on the beneficial effect of a regular patient-related post-therapy care before implant insertion.

INFLUENCE OF A FUNCTIONAL LOADING TIME ON BONE FORMATION AROUND OSSEOINTEGRATED TITANIUM IMPLANTS IN ADULT DOGS (성견에서 골유착성 타이타늄 임프란트의 기능적 노출 시기가 주위의 골형성에 미치는 영향)

  • Yang Ja-Ho;Lee Ho-Yong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.3
    • /
    • pp.55-74
    • /
    • 1991
  • The purpose of this study was to investigate the influence of early functional load around osseointegrated titanium implants. 24 titanium plasma spray coated implants (ITI HS-type) were placed into the previously extracted site in the mandible of six adult dogs. The implants were divided into three groups : the control group was the implants without abutment during the experimental period; the experimental group I was loaded by connecting the contoured abutment after 6 weeks of healing; the experimental group II was loaded after 12 weeks of healing: and the mandibular second premolar and surrounding tissues were selected for natural tooth group to compare the implanted group. All dogs were injected intravenously tetracycline, alizarin red S, and calcein for bone labeling. After the experimental period of 18 weeks, the dogs were sacrificed and longitudinal sections of the bone-implant interface were cut and observed using light microscope, scanning electron microscope, and fluorescence microscope. The results of the study were as follows: 1. Light and scanning electron microscopically, all implant surfaces were well contact with bone tissue at the cortical layer, but some areas of cancellous bone were not contact directly. 2. Fluorescence microscopically, number and size of the new secondary osteons around the implant were increased than those of the natural tooth. 3. Fluorescence microscopically, linear and concentrical fluorescence was observed at or near the surface of all implants, and the bone formation and remodeling of the implants loaded after 6 week of healing were great, and unloaded implants were worst. 4. Fluorescence microscopically, endosteal bone formation was greater than periosteal bone formation at or near the implants. 5. Fluorescence microscopically, number and size of linear and concentric fluorescence was increased at the lingual side than the buccal side of the loaded implants. The result of the study indicate the possibility of the early load to the implant via a prosthesis.

  • PDF

Bio-hybrid dental implants prepared using stem cells with β-TCP-coated titanium and zirconia

  • Safi, Ihab Nabeel;Hussein, Basima Mohammed Ali;Al-Shammari, Ahmed Majeed
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.3
    • /
    • pp.242-257
    • /
    • 2022
  • Purpose: This study investigated periodontal ligament (PDL) restoration in osseointegrated implants using stem cells. Methods: Commercial pure titanium and zirconium oxide (zirconia) were coated with beta-tricalcium phosphate (β-TCP) using a long-pulse Nd:YAG laser (1,064 nm). Isolated bone marrow mesenchymal cells (BMMSCs) from rabbit tibia and femur, isolated PDL stem cells (PDLSCs) from the lower right incisor, and co-cultured BMMSCs and PDLSCs were tested for periostin markers using an immunofluorescent assay. Implants with 3D-engineered tissue were implanted into the lower right central incisors after extraction from rabbits. Forty implants (Ti or zirconia) were subdivided according to the duration of implantation (healing period: 45 or 90 days). Each subgroup (20 implants) was subdivided into 4 groups (without cells, PDLSC sheets, BMMSC sheets, and co-culture cell sheets). All groups underwent histological testing involving haematoxylin and eosin staining and immunohistochemistry, stereoscopic analysis to measure the PDL width, and field emission scanning electron microscopy (FESEM). The natural lower central incisors were used as controls. Results: The BMMSCs co-cultured with PDLSCs generated a well-formed PDL tissue that exhibited positive periostin expression. Histological analysis showed that the implantation of coated (Ti and zirconia) dental implants without a cell sheet resulted in a well-osseointegrated implant at both healing intervals, which was confirmed with FESEM analysis and negative periostin expression. The mesenchymal tissue structured from PDLSCs only or co-cultured (BMMSCs and PDLSCs) could form a natural periodontal tissue with no significant difference between Ti and zirconia implants, consequently forming a biohybrid dental implant. Green fluorescence for periostin was clearly detected around the biohybrid implants after 45 and 90 days. FESEM showed the invasion of PDL-like fibres perpendicular to the cementum of the bio-hybrid implants. Conclusions: β-TCP-coated (Ti and zirconia) implants generated periodontal tissue and formed biohybrid implants when mesenchymal-tissue-layered cell sheets were isolated from PDLSCs alone or co-cultured BMMSCs and PDLSCs.

The effect of early loading on the direct bone-to-implant surface contact of the orthodontic osseointegrated titanium implant (교정력이 골유착성 티타니움 임프란트의 초기 고정에 미치는 영향에 관한 실험적 연구)

  • Chung, Kyu-Rhim;Lee, Sung-Ja
    • The korean journal of orthodontics
    • /
    • v.31 no.2 s.85
    • /
    • pp.173-185
    • /
    • 2001
  • The orthodontic osseointegrated titanium implant, a kind of intraoral skeletal anchorage can be an alternative to tooth-borne anchorage, in case that the conventional tooth-borne anchorage is not available or the anchorage is critical. This study was conducted to elucidate the effect of early loading on the osseointegration of the orthodontic titanium implant and the healing process of the impaired bone at the site of implant after removing it. In two adult beagle dogs24 osseointegrated titanium implants were inserted into the alveolar bone, with 12 implants placed in each dog. In dog1, 6 out of 12 implants were loaded with 200-300gm of force immediately after placing, and the remaining 6 implants were not loaded for 4weeks. In dog2, all 12 implants had healing period of 4weeks, and then were loaded with 200-300gm of force for another 4weeks. Following an observation period of 4 and 8 weeks, the animals were sacrificed. Then the implants and the surrounding bone of dog1 and dog2 were removed, respectively. Undecalcified sections along the long axis of implant were made and the degree of osseointegration was examined under the light microscope. The results were as follows. 1. In the histologic features of tissues around implants anchored in dog1, there was no difference between immediately loaded implants and unloaded implants. Immature woven bone was ingrowing into the thread spaces from the original compacta and in direct contact with the implant surface in part. 2. The premature loading just after 4weeks healing period did not halt the progress of the osseointegration between bone and implant surface. The woven bone around the implants was maturing into the lamellar bone which resembled the structure of the original compacta at the end of 8weeks observation period. 3. Most implants with the inflammed surrounding mucosa were lost or mobile. The mobile implants were encapsulated by fibrous connective tissue which separated the implant surface from the bone. 4. The impaired bone at the site of the implant failed to anchor was showing recovery without inflammatory reaction 2weeks after removing, with the immaure woven bone lined by active osteoblasts and osteoid. Based on the results of this study, the integration of this orthodontic implant seemed to be impaired by the inflammation of the tissue surrounding the Implant rather than by early loading on implant, and increased with time lapsed after placing the implant. The use of implant described in this report can be recommended as an orthodontic anchorage unit immediately after insertion under the careful control of orthodontic force applied and plaque.

  • PDF

Implant Adapted Occlusion (임플란트 적응 교합 : 생역학 원리에 의한 임상지침)

  • Kim, Yongsik;Kim, Hyung-Jin;Lee, Byung-Uk
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.20 no.1
    • /
    • pp.57-70
    • /
    • 2004
  • The significance of occlusion has regained its popularity in dentistry with the introduction of implant therapy. Literature has reported that the clinical success and longevity of dental implants can be achieved by biomechanically controlled occlusion. Occlusal overload is known to be one of the main causes for implant failure. Evidences have suggested that occlusal overload contribute to early implant bone loss as well as deosseointegration of successfully integrated implants. Unlike natural teeth, osseointegrated implants are ankylosed to surrounding bone without the periodontal ligament (PDL) which provides mechanoreceptors as well as shock-absorbing function. Moreover, the crestal bone around dental implants may act as a fulcrum point for lever action when a force (bending moment) is applied, indicating that implants/implant prosthesis could be more susceptible to crestal bone loss by applying force. Hence, it is essential for clinicians to understand inherent differences between teeth and implants and how force, either normal or excessive force, may influence on implants under occlusal loading. The purposes of this paper are to review the importance of implant occlusion, to establish the optimum implant occlusion with biomechanical rationale, to provide clinical guidelines of implant occlusion and to discuss how to manage complications related to implant occlusion.

Occlusal concepts and considerations in implant supported prosthesis (임플란트 지지 보철물의 교합양식 및 고려사항)

  • Baek, Yeon-Wha;Kim, Myung-Joo;Kwon, Ho-Beom;Lim, Young-Jun
    • The Journal of the Korean dental association
    • /
    • v.58 no.8
    • /
    • pp.496-504
    • /
    • 2020
  • The osseointegrated implants react biomechanically in a different pattern to occlusal force, due to lack of the periodontal ligament unlike the natural teeth. The implants show markedly less movement and limited tactile sensitivity compared with the natural teeth. The implant occlusion concept aims to avoid overloading on the implants and to direct occlusal loads along the longitudinal axis of the implants, in order to compensate for the different biomechanics of the implants. Although many guidelines and theories on implant occlusion have been proposed, few have provided strong supportive evidence. Moreover, the outcome of treatment often quite successful in spite of different concepts of occlusion and there is an increasing tendency to doubt about the strict theoretical implant-specific occlusion concept. The purpose of this article is to review the previous reports about the concept of implant occlusion and discuss clinical occlusal considerations in implant rehabilitations.

  • PDF