• Title/Summary/Keyword: Oscillating Frequency

Search Result 336, Processing Time 0.029 seconds

Electromagnetic Susceptibility Analysis of Phase Noise in VCOs (위상 잡음 이론을 적용한 전압 제어 발진기의 전자파 내성 분석)

  • Hwang, Jisoo;Kim, SoYoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.5
    • /
    • pp.492-498
    • /
    • 2015
  • As the integration of circuit components increases steadily, various EMS(Electromagnetic Susceptibility) problems have emerged from integrated circuits and electrical systems. The electromagnetic susceptibility of VCOs(Voltage Controlled Oscillator) is especially critical in RF systems. Therefore, in this paper, through the phase noise theory that models electrical oscillators as linear time variant systems, the EMS characteristics of representative VCO -ring VCO and LC VCO- with 1.2 GHz of reference oscillating frequency are analyzed under the existence of the electromagnetic noise coupled in power supply. An simulation algorithm is developed to extract impulse response function based on the phase noise theory. When there is no supply noise, the magnitude of the jitter of two oscillators were similar to around 2.1 ps, but in presence of supply noise, the jitter was significantly lower in LC VCOs than ring VCOs.

A Differential Colpitts-VCO Circuit Suitable for Sub-1V Low Phase Noise Operation (1V 미만 전원 전압에서 저 위상잡음에 적합한 차동 콜피츠 전압제어 발진기 회로)

  • Jeon, Man-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.1
    • /
    • pp.7-12
    • /
    • 2011
  • This paper proposes a differential Colpitts-VCO circuit suitable for low phase noise oscillation at the sub-1V supply voltage. Oscillation with low phase noise at the sub-1V supply voltage is facilitated by employing inductors as the current sources of the proposed circuit. One of the two feedback capacitors of the single-ended Colpitts oscillator in the proposed circuit is replaced with the MOS varactor in order to further reduce the resonator loss. Post-layout simulation results using a $0.18{\mu}m$ RF CMOS technology show that the phase noises at the 1MHz offset frequency of the proposed circuit oscillating at the sub-1V supply voltages of 0.6 to 0.9 V are at least 7 dBc/Hz lower than those of the well-known cross-coupled differential VCO.

A Study of Oscillation Characteristics of Supersonic Fluidic Oscillator With Shared Feedback Channel (공유피드백 유로를 갖는 초음속 유체진동기의 진동특성에 관한 연구)

  • Lee, SeungHeon;Park, SangHoon;Ko, HeeChang;Seo, SongHyun;Lee, Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.167-174
    • /
    • 2020
  • A study of flow characteristics of supersonic fluidic oscillators with shared feedback channel inside was carried out. Unsteady CFD analysis were performed and the numerical results were validated by comparison with the experimental ones observed for the same operation conditions. It was found that the mass flow between individual oscillators through the shared feedback channel directly influenced on the oscillating flow mechanism inside the oscillator, and finally on the synchronization of the jet oscillations. It was also observed that the oscillator with shared feedback channel provided higher pressure loss as well as higher oscillation frequency as compared to the single oscillator of the same geometric shape.

Magnetic Field Measuring System by using Loop-type Sensor (루우프형 센서를 이용한 자장측정계)

  • Lee, Bok-Hee;Kil, Gyung-Suk;Park, Dong-Hwa
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.14-21
    • /
    • 1995
  • This paper deals with the active magnetic field measuring system which can measure the time-varying magnetic fields generated by power installations and lightning discharges. The magnetic field measuring system consists of the loop-type magnetic field sensor and the active integrator operated by a differential amplifier. The theoretical principle and design rule of the time-varying magnetic field measuring device and the calibration apparatus are introduced. From the calibration experiments, the frequency bandwidth of the full measuring system ranges from 270 Hz to about 2.3 MHz and the response sensitivity for magentic field strength is 128 $mV/{\mu}T$, respectively, and the calculated B-field values in the center of the loop-type sensor versus the the applied current made with a region of ${\pm}3\;%$error. The actual survey experiments by using lightning impulse current and oscillating impulse current were performed, the results of comparision between the input current waveforms and the magnetic field waveforms are a good agreement with each others and their deviations are less than 0.5 %.

  • PDF

Behaviors of Impulse Ground Impedances Associated with the Current Injection Point in a Ground Rod (봉상 접지전극에시 전류유입위치에 따른 임펄스 접지임피던스의 특성)

  • Lee, Bok-Hee;Jeong, Dong-Cheol;Lee, Su-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.94-100
    • /
    • 2005
  • This paper presents the behaviors of transient and effective impulse impedances of a long ground rod associated with the current injection points. The laboratory test for the time domain performance of actual-sized model ground rod subjected to a lightning stroke current has been carried out The transient ground impedances of long ground rods under impulse currents were higher than the ground resistance. Both of the ground resistance and the effective impulse ground impedance decrease with increasing the length of the ground rods. Also, the effective impulse ground impedances are significantly increased in fast rise time ranges. The reduction of the ground resistance is decisive to improve the impulse impedance characteristics of grounding systems. When the test current is injected at the bottom of ground rod, the oscillating pulses with high frequency are included on the wave front of ground rod potential and the effective impulse impedances are higher than any other cases.

Investigation of Spark Discharge in Water as a Source of Mechanical Actuation

  • Taylor, Nathaniel D.;Fridman, Gregory;Fridman, Alexander;Dobrynin, Danil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.258-258
    • /
    • 2014
  • Spark discharge in water generates shockwaves which have been utilized to generate mechanical actuation for potential use in pumping application. Discharge pulses of several microseconds generate shockwaves and vapor bubbles which subsequently displace the water for a period of milliseconds. Through the use of a sealed discharge chamber and metal bellow spring, the fluid motion can be used create an oscillating linear actuator. Continuous actuation of the bellow has been demonstrated through the use of high frequency spark discharge. Discharge in water forms a region of high electric field around the electrode tip which leads to the creation of a thermal plasma channel. This process produces fast thermal expansion, vapor and bubble generation, and a subsequent shockwave in the water which creates physical displacement of the water [1]. Previous work was been conducted to utilize the shockwave effect of spark discharge in water for the inactivation of bacteria, removal of mineral fouling, and the formation of sheet metal [2-4]. Pulses ranging from 25 to 40 kV and 600 to 900 A are generated inside of the chamber and the bellow motion is captured using a slow motion video camera. The maximum displacements measured are from 0.7 to 1.2 mm and show that there is a correlation between discharge energy input to the water and the displacement that is generated. Subsequent oscillations of the bellow are created by the spring force of the bellow and vapor in the chamber. Using microsecond shutter speed ICCD imaging, the development of the discharge bubble and spark can be observed and measured.

  • PDF

On the second order effect of the springing response of large blunt ship

  • Kim, Yooil;Park, Sung-Gun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.873-887
    • /
    • 2015
  • The springing response of a large blunt ship was considered to be influenced by a second order interaction between the incoming irregular wave and the blunt geometry of the forebody of the ship. Little efforts have been made to simulate this complicated fluid-structure interaction phenomenon under irregular waves considering the second order effect; hence, the above mentioned premise still remains unproven. In this paper, efforts were made to quantify the second order effect between the wave and vibrating flexible ship structure by analyzing the experimental data obtained through the model basin test of the scaled-segmented model of a large blunt ship. To achieve this goal, the measured vertical bending moment and the wave elevation time history were analyzed using a higher order spectral analysis technique, where the quadratic interaction between the excitation and response was captured by the cross bispectrum of two randomly oscillating variables. The nonlinear response of the vibrating hull was expressed in terms of a quadratic Volterra series assuming that the wave excitation is Gaussian. The Volterra series was then orthogonalized using Barrett's procedure to remove the interference between the kernels of different orders. Both the linear and quadratic transfer functions of the given system were then derived based on a Fourier transform of the orthogonalized Volterra series. Finally, the response was decomposed into a linear and quadratic part to determine the contribution of the second order effect using the obtained linear and quadratic transfer functions of the system, combined with the given wave spectrum used in the experiment. The contribution of the second order effect on the springing response of the analyzed ship was almost comparable to the linear one in terms of its peak power near the resonance frequency.

KIC 6220497: A New Algol-type Eclipsing Binary with δ Sct Pulsations

  • Lee, Jae Woo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.41.1-41.1
    • /
    • 2016
  • We present the physical properties of KIC 6220497 exhibiting multiperiodic pulsations from the Kepler photometry. The light curve synthesis represents that the eclipsing system is a semi-detached Algol with a mass ratio of q=0.243, an orbital inclination of i=77.3 deg, and a temperature difference of ${\Delta}T=3,372K$, in which the detached primary component fills its Roche lobe by ~87% and is about 1.6 times larger than the lobe-filling secondary. To detect reliable pulsation frequencies, we analyzed separately the Kepler light curve at the interval of an orbital period. Multiple frequency analyses of the eclipse-subtracted light residuals reveal 32 frequencies in the range of $0.75-20.22d^{-1}$ with semi-amplitudes between 0.27 and 4.55 mmag. Among these, four frequencies ($f_1$, $f_2$, $f_5$, $f_7$) may be attributed to pulsation modes, while the other frequencies can be harmonic and combination terms. The pulsation constants of 0.16-0.33 d and the period ratios of $P_{pul}/P_{orb}=0.042-0.089$ indicate that the primary component is a ${\delta}$ Sct pulsating star in p modes and, thus, KIC 6220497 is an oscillating eclipsing Algol (oEA) star. The dominant pulsation period of about 0.1174 d is considerably longer than the values given by the empirical relations between the pulsational and orbital periods. The surface gravity of log $g_1=3.78$ is significantly smaller than those of the other oEA stars with similar orbital periods. The pulsation period and the surface gravity of the pulsating primary demonstrate that KIC 6220497 would be the more evolved EB, compared with normal oEA stars.

  • PDF

Study on Phase-Amplitude Characteristics in a Simplex Swirl Injector with Low Frequency Range (저주파 압력섭동 범위 내에서의 단일 스월 인젝터의 진폭-위상 특성 연구)

  • Khil, Tae-Ock;Chung, Yun-Jae;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.2
    • /
    • pp.19-28
    • /
    • 2010
  • Generally, combustion instability is generated by the mutual coupling between the heat release and the acoustic pressure in the combustor. On the occasion, the acoustic pressure generates the oscillation of the mass flow rate of propellant injected from injector, and this oscillation again affects combustion in the combustor. So, the dynamic characteristics of the injector have been studied to control combustion instability using injector itself in Russia from 1970's. In order to study injector dynamics, a mechanical pulsator for forced pressure pulsation is produced and the method to quantify the mass flow rate of the propellant that is oscillating at the exit of the injector is developed. With the pulsator and the method, pulsating values of the mass flow rate, pressure, liquid film thickness, and axial velocity generated at the exit of the simplex swirl injector are measured in real time. And phase-amplitude characteristics of each parameter are analyzed using these pulsating values acquired at the exit of the simplex swirl injector.

Measurement of rivulet movement and thickness on inclined cable using videogrammetry

  • Jing, Haiquan;Xia, Yong;Xu, Youlin;Li, Yongle
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.485-500
    • /
    • 2016
  • Stay cables in some cable-stayed bridges suffer large amplitude vibrations under the simultaneous occurrence of rain and wind. This phenomenon is called rain-wind-induced vibration (RWIV). The upper rivulet oscillating circumferentially on the inclined cable surface plays an important role in this phenomenon. However, its small size and high sensitivity to wind flow make measuring rivulet size and its movement challenging. Moreover, the distribution of the rivulet along the entire cable has not been measured. This paper applies the videogrammetric technique to measure the movement and geometry dimension of the upper rivulet along the entire cable during RWIV. A cable model is tested in an open-jet wind tunnel with artificial rain. RWIV is successfully reproduced. Only one digital video camera is employed and installed on the cable during the experiment. The camera records video clips of the upper rivulet and cable movements. The video clips are then transferred into a series of images, from which the positions of the cable and the upper rivulet at each time instant are identified by image processing. The thickness of the upper rivulet is also estimated. The oscillation amplitude, equilibrium position, and dominant frequency of the rivulet are presented. The relationship between cable and rivulet variations is also investigated. Results demonstrate that this non-contact, non-intrusive measurement method has good resolution and is cost effective.