• Title/Summary/Keyword: Orthotic device

Search Result 9, Processing Time 0.023 seconds

3D printing-based Fabrication of Orthotic Devices Using 3D Computer-Aided Design and Rapid Prototyping (3차원 그래픽 설계와 3D 프린팅에 의한 보조기 쾌속조형 제작 방법 연구)

  • Choi, B.G.;Heo, S.Y.;Son, K.T.;Lee, S.Y.;Na, D.Y.;Rhee, K.M.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.2
    • /
    • pp.145-151
    • /
    • 2015
  • In this paper, we proposed the fabrication methodology of orthotic device using 3D Computer-Aided Design programme and 3D printing technology based on images acquired from 3D scanner. We set the process and methodology of its fabrication method and confirmed whether it is available for clinical by fabricating four kinds of orthotic device for a patient with cerebral palsy. 3D printing technology method was indicated quantitatively and qualitatively about duration, tensile strength stronger comparing with conventional method, and we could propose that the 3D printing technology for the orthosis could be the proper method to mediate and compensate with reported problems related to orthosis.

  • PDF

A Novel Kinematic Design of a Knee Orthosis to Allow Independent Actuations During Swing and Stance Phases (회전기 및 착지기 분리 구동을 가능케 하는 새로운 무릎 보장구의 기구부 설계)

  • Pyo, Sang-Hun;Kim, Gab-Soon;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.814-823
    • /
    • 2011
  • Nowadays many neurological diseases such as stroke and Parkinson diseases are continually increasing. Orthotic devices as well as exoskeletons have been widely developed for supporting movement assistance and therapy of patients. Robotic knee orthosis can compensate stiff-knee gait of the paralyzed limb and can provide patients consistent assistance at wearable environments. With keeping a robotic orthosis wearable, however, it is not easy to develop a compact and safe actuator with fast rotation and high torque for consistent supports of patients during walking. In this paper, we propose a novel kinematic model for a robotic knee orthosis to drive a knee joint with independent actuation during swing and stance phases, which can allow an actuator with fast rotation to control swing motions and an actuator with high torque to control stance motions, respectively. The suggested kinematic model is composed of a hamstring device with a slide-crank mechanism, a quadriceps device with five-bar/six-bar links, and a patella device for knee covering. The quadriceps device operates in five-bar links with 2-dof motions during swing phase and is changed to six-bar links during stance phase by the contact motion to the patella device. The hamstring device operates in a slider-crank mechanism for entire gait cycle. The kinematics and velocity/force relations are analyzed for the quadriceps and hamstring devices. Finally, the adequate actuators for the suggested kinematic model are designed based on normal gait requirements. The suggested kinematic model will allow a robotic knee orthosis to use compact and light actuators with full support during walking.

Effects of Muscle Activity of Lower Extrimity with Contact Laterally Wedged Insoles with Strapping of Varying Elevations (밀착형 외측 쐐기 스트랩 깔창의 높이에 따라 하지의 근활성도에 미치는 영향)

  • Lee, Sang-Yong;Bae, Sung-Soo;Gong, Won-Tae
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.1 no.1
    • /
    • pp.37-47
    • /
    • 2006
  • Purpose : The purpose is to assess the effects of muscle activity of normal person with contact laterally wedged insoles with strapping of varying elevations of 9, 15, 21mm. Methods : The subjects were adult males and women who had not experienced any knee injury. They were asked to performed from isometric contraction exerciese in four postures using lateral wedged. The normalized EMG activity levels(%MVC) of the vastus lateralis, vastus medialis, tibialis anterior, soleus for the four postures of the lower extremities were compared using one way repeted measures ANOVA. Results : Comparison of EMG amplitudes across all postures revealed no significant differences among all muscles(P>0.05). Conclusion : Further studies of the effect of wedged insole angle on knee varus torque in patients with medial-lateral knee osteoarthritis are needed.

  • PDF

The Effect of Rear Foot Wedge Angle on Peak Plantar Pressures on the Forefoot During Walking (Rear Foot Wedge 각도가 보행시 전족저 최대압력에 미치는 영향)

  • Kwon, Oh-Yun;Jung, Do-Young;Park, Kyoung-Hee
    • Physical Therapy Korea
    • /
    • v.9 no.3
    • /
    • pp.11-21
    • /
    • 2002
  • The purpose of this study was to find the effect of rear foot wedge angle on peak plantar pressures on the forefoot during walking. Twenty normal healthy subjects (10 female, 10 male) were recruited. Peak plantar pressure was measured using pressure distribution platforms (MatScan system) in medial forefoot (under the first, second metatarsal head) and lateral forefoot (under the third, fourth, fifth metatarsal head). The subjects walked at the comfortable velocity under seven conditions; bare footed, $5^{\circ}$, $10^{\circ}$ and $15^{\circ}$ wedges under the medial and lateral sides of the hindfoot. The three averaged peak plantar pressures were collected at each condition at stance and toe off phases. The results showed that a significant increase in lateral forefoot plantar peak pressure investigated in the medial wedge and a significant decrease in lateral forefoot plantar peak pressure investigated in lateral wedge at stance phase (p<.05). These results suggest that rear foot wedge may be useful to modify the peak plantar pressure on the forefoot.

  • PDF

Brace Compression for Treatment of Pectus Carinatum

  • Jung, Joonho;Chung, Sang Ho;Cho, Jin Kyoung;Park, Soo-Jin;Choi, Ho;Lee, Sungsoo
    • Journal of Chest Surgery
    • /
    • v.45 no.6
    • /
    • pp.396-400
    • /
    • 2012
  • Background: Surgery has been the classical treatment of pectus carinatum (PC), though compressive orthotic braces have shown successful results in recent years. We propose a non-operative approach using a lightweight, patient-controlled dynamic chest-bracing device. Materials and Methods: Eighteen patients with PC were treated between July 2008 and June 2009. The treatment involved fitting of the brace, which was worn for at least 20 hours per day for 6 months. Their degree of satisfaction (1, no correction; 4, remarkable correction) was measured at 12 months after the initiation of the treatment. Results: Thirteen (72.2%) patients completed the treatment (mean time, $4.9{\pm}1.4$ months). In patients who completed the treatment, the mean overall satisfaction score was $3.73{\pm}0.39$. The mean satisfaction score was 4, and there was no recurrence of pectus carinatum in patients who underwent the treatment for at least 6 months. Minimal recurrence of pectus carinatum after removal of the compressive brace occurred in 5 (38.5%) patients who stopped wearing the compressive brace at 4 months. Conclusion: Compressive bracing results in a significant improvement in PC appearance in patients with an immature skeleton. However, patient compliance and diligent follow-up appear to be paramount for the success of this method of treatment. We currently offer this approach as a first-line treatment for PC.

The Effects of Treadmill Gait Training with Flexible Derotator of Femur Orthosis on Postural Alignment of Lower Extremities and Gait in Children with Cerebral Palsy: Single Group Rpeated Measure Design (대퇴골 회전방지보조기를 착용한 트레드밀 보행훈련이 뇌성마비 아동의 하지배열 및 보행에 미치는 영향: 단일그룹 반복측정 연구)

  • Yoo, Hyun-Young;Kim, Suhn-Yeop;Jang, Hyun-Jung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • PURPOSE: The purpose of this study was to investigate the effects of flexible derotator of femur orthosis (FDO) during treadmill gait training on the quadriceps-angle (Q-angle), lateral pelvic tilt, gait speed, and number of steps in children with cerebral palsy. METHODS: Seven children with cerebral palsy who had rotational deformity of the lower extremities participated in this study. We used single group repeated measure design. The procedure consisted of baseline phase, intervention phase, and post-intervention phase. The baseline phase consisted of stretching and strengthening exercise and treadmill gait training without FDO. The treatment phase not only included the same procedures as those for baseline, but also included FDO during treadmill gait training. Postural alignment of the lower extremities was assessed with the Q-angle, and lateral pelvic tilt using the Dartfish software program. A 10-m walk test was used to evaluate gait speed and number of steps. RESULTS: For postural alignment, there was significant differences after the application of FDO (p<.05). For gait ability, there was significant differences in all phases (p<.01). CONCLUSION: These finding suggest that the application of FDO during treadmill gait training had a positive effect on the improvement of postural alignment and gait ability in children with cerebral palsy having rotational deformity.

The Relationship between Foot Arch Structure and March Fractures - Comparative study between 15(30feet) normal person and the 15(30feet) patients with march fracture - (행군골절 발생과 발아치 구조의 연관성에 대한 연구보고)

  • Bae, Young-Jae;Yoon, Sung-Il
    • Journal of Korean Foot and Ankle Society
    • /
    • v.2 no.2
    • /
    • pp.71-75
    • /
    • 1998
  • The fact that, under similar training activities performed in the same environment, march fractures develop in only a certain percentage of the trainees indicates that intrinsic factors are affecting the prevalence of these fractures. Among these intrinsic factors, the relation between foot arch type and the occurance of march fractures was investigated in this study. From 1997 to 1998, at one infantry medical company of infantry corps in Korea, 15 march fracture patients were detected among infantry soldiers. Quantitative measures of the foot arch (longitudinal) structure of 15(30feet) march fracture patients were established and compared with those of 15(30feet) normal person. The results were as follows. 1. From the lateral X-ray film, three parameters (i.e. calcaneal angle, forefoot angle, height to length ratio)were defined to describe the structure of the longitudinal arch of the foot. 2. The mean value of the calcaneal angle of march fracture group and normal control group showed 16.4 degree, 20.5 degree respectively. The difference between two groups was statistically significant (P>0.006), but those of forefoot angle and height to length ratio were not. 3. In the calcaneal angle twenty-six feet(87%) of march fracture group were lower than 17 degrees but twenty-five feet(83%) of normal control group were more than 17 degrees. That is, march fracture were more prevalent in feet with low calcaneal angle. 4. In the low arch foot, the orthotic device might relieve the energy load carried by the foot, thus reducing the incidence of march fractures, and should be analyzed in further study.

  • PDF

Torticollis Management Using the Customized Soft Neck Collar in CATCH 22 Syndrome Combined with Klippel-Feil Anomaly: A Case Report

  • Moon, Myung-Hoon;Kim, Soo-Yeon
    • Journal of Interdisciplinary Genomics
    • /
    • v.1 no.2
    • /
    • pp.19-22
    • /
    • 2019
  • CATCH 22 syndrome is rare genetic disease that has various manifestations. Cervical vertebral anomaly, such as Klippel-Feil anomaly, is frequently observed in the patients with CATCH22 syndrome. We present the case of an 11-year-old female patient with CATCH22 syndrome and Klippel-Feil anomaly who had been treated torticollis using the customized soft neck collar. During the patient's first visit to our clinic, she presented with low ear set, skull deformity, intellectual disability, and tilting of the head to the left by approximately 25 degrees. Imaging studies revealed multisegmental fusion and C3 hemivertebrae of the cervical spine and left thoracic scoliosis at T4 with 50 degrees of Cobb's angle. We instructed passive stretching and applied the customized soft neck collar we invented. The ipsilateral aspect of the neck collar is designed to provide vertical support between the clavicle and mandibular angle and is adjustable in height. The Velcro was attached to the neck collar at the point of contact with the ipsilesional mandibular angle, which provides negative sensory feedback, inducing her to tilt neck to the contralesional side. We applied the neck collar for 2 hours a day. After 1 year of treatment, her neck inclination angle improved from 25 to 10 degrees. Providing negative sensory feedback using the customized soft neck collar can be one of the treatment options of postural management in patients with torticollis in cases of CATCH 22 syndrome combined with Klippel-Feil anomaly.

Comparative study on the Shape between a Customized Finger Made by 3D Printing Technology, Real Small Finger, a plaster Small Finger, Based on CT Data (CT data 기반 3D 프린팅으로 제작된 Small Finger, 실제 Small Finger 그리고 석고 Small Finger 형상 비교 연구)

  • Choi, Hyeun-Woo;An, Do-Hyun;Rhee, Do-byung;Lee, Jong-Min;Seo, Anna
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.153-158
    • /
    • 2019
  • The purpose of this study is to compare and analyse the differences between a customized small finger made by 3D printing technology, a real small finger, and the other made from plaster of an orthotic company. The areas and the volumes of each cross-section were measured by Computer tomography(CT) and a 3D scanner and analysis of variance was performed to find out the differences of each shape. The areas of the point of 15.69mm, Distal Interphalangel Joints, were measured 30 times respectively using the caliper toll function of Picture Archiving Communication System(PASC) program. The volumes were measured by Configure Units of Meshmixer Program. There was no significant difference in the areas between three of them and there was 0.2 mm gap in the volume, which was more than the significance probability. Therefore, the result of this study shows the availability of finger orthoses made by 3D printing technology in the medical field.