• Title/Summary/Keyword: Orthorhombic $LiMnO_{2}$

Search Result 17, Processing Time 0.028 seconds

Synthesis of orthorhombic $LiMnO_2$ and its electrochemical properties

  • Kim, Jung-Min;Chung, Hoon-Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.2
    • /
    • pp.51-56
    • /
    • 2005
  • We prepared orthorhombic $LiMnO_2$ by emulsion drying method. The thermo-gravimetric measurement and X-ray diffraction studies indicated that the orthorhombic $LiMnO_2$ phase was formed above $800^{\circ}C$ by oxygen evaporation process from $LiMn_2O_4$ and $Li_2MnO_3$. In this process, we could control the ordering of $LiMnO_2$ with heating rate. It was observed that electrochemical properties depended on the ordering of this material; the ordered one exhibited good capacity retention, whereas the disordered one suffered capacity fading upon cycling, especially in the 3 V region. Transmission electron microscopic (TEM) study showed that this difference is related with difference in the stress relieving effects in the samples.

Electrochemical Characteristics of LiMnO2 for Lithium Secondary Battery

  • Jin Bo;Jun Dae-Kyoo;Gu Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.76-80
    • /
    • 2006
  • Well-defined orthorhombic $LiMnO_2\;and\;LiCo_{0.1}Mn_{0.9}O_2$ were synthesized by a solid-state reaction and quenching process. X-ray diffraction (XRD) results revealed that the as-synthesized powders showed an orthorhombic phase of a space group with Pmnm. The $Li/LiMnO_2\;and\;Li/LiCo_{0.1}Mn_{0.9}O_2$ cells were constituted and cycled galvanostatically in the voltage range of 2.0-4.3 V vs. $Li/Li^+$ at a current density of $0.5\;mA\;cm^{-2}$ at room temperature and $50^{\circ}C$, respectively. The results demonstrated that the highest specific capacity of $Li/LiMnO_2$ cells at room temperature and $50^{\circ}C$ was 95 and $155\;mAh\;g^{-1}$, respectively. As for $Li/LiCo_{0.1}Mn_{0.9}O_2$ cells, the highest specific capacity at room temperature and $50^{\circ}C$ was 160 and $250\;mAh\;g^{-l}$, respectively. It could be seen that the performance of $Li/LiCo_{0.1}Mn_{0.9}O_2$ cells was better than that of $Li/LiMnO_2$ cells.

Layered $LiCo_{x}Mn_{1-x}O_2$ as Cathode Materials for Li-Ion Batteries

  • Kumagai, Naoaki;Myung, Seung-Taek;Komaba, Shinichi
    • Electrical & Electronic Materials
    • /
    • v.14 no.12
    • /
    • pp.7-10
    • /
    • 2001
  • Orthorhombic type LiCo$_{x}$Mn$_{1-x}$ O$_2$(0$\leq$x$\leq$0.14) oxides have been synthesized by hydrothermal treatment of (Co$_{x}$Mn$_{1-x}$ )$_3$O$_4$precursors and LiOH aqueous solution at 17$0^{\circ}C$. As-synthesized powders showed well-ordered $\beta$-MaMnO$_2$structures, and the products were single crystalline particle oxides from TEM observations. The particle size decreased with increasing the amount of Co substituent. Much more improved capacity upon 100 cyclings was clearly seen in orthorhombic LiCo$_{0.1}$Mn$_{0.9}$O$_2$, comparing to orthorhombic LiMnO$_2$./TEX>.EX>.

  • PDF

Layered $LiCo_{x}Mn_{1-x}O_{2}$ as Cathode Materials for Li-Ion Batteries

  • Kumagai, Naoaki;Myung, Seung-Taek;Komaba, Shinichi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.7-10
    • /
    • 2001
  • Orthorhombic type $LiCo_{x}Mn_{1-x}O_{2}$(0 ${\times}$ 0.14) oxides have been synthesized by hydrothermal treatment of $(Co_{x}Mn_{1-x})_{3}O_{4}$ precursors and LiOH aqueous solution at $170^{\circ}C$. As-synthesized powders showed well-ordered ${\beta}-NaMnO_{2}$ structures, and the products were single crystalline particle oxides from TEM observations. The particle size decreased with increasing the amount of Co substituent. Much more improved capacity upon 100 cyclings was clearly seen in orthorhombic $LiCo_{0.1}Mn_{0.9}O_{2}$, comparing to orthorhombic $LiMnO_2$.

  • PDF

Layered $LiCo_{x}Mn_{1-x}O_2$ as Cathode Materials for Li-Ion Batteries

  • Kumagai, Naoaki;Myung, Seung-Taek;Komaba, Shinichi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.7-10
    • /
    • 2001
  • Orthorhombic type $LiCo_{x}Mn_{1-x}O_2$ (0 x 0.14) oxides have been synthesized by hydrothermal treatment of ($Co_{x}Mn_{1-x}$)$_3O_4$ precursors and LiOH aqueous solution at $170^{\circ}C$. As-synthesized powders showed well-ordered ${\beta}$-$NaMnO_2$ structures, and the products were single crystalline particle oxides from TEM observations. The particle size decreased with increasing the amount of Co substituent. Much more improved capacity upon 100 cyclings was clearly seen in orthorhombic $LiCo_{0.1}Mn_{0.9}O_2$, comparing to orthorhombic $LiMnO_2$.

  • PDF

Charge/Discharge Characteristics of $LiMnO_2$ Battery using Carbon as Anode Materials (카본을 부극으로 사용하는 $LiMnO_2$ 전지의 전기화학적 특성)

  • Jin, En-Mei;Lim, Seung-Gyu;Kim, Nam-In;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.277-278
    • /
    • 2008
  • Orthorhombic $LiMnO_2$(o-$LiMnO_2$) has attracted public attentions as a cathode materials of Lithium ion battery because it has low cost and high theoretical discharge capacity of 285mAh $g^{-1}$. In our study, o-$LiMnO_2$ is synthesized by quenching method. To verify their phase structure, X-ray diffraction is accomplished. Test cells are assembled to check electrochemical characteristics using acquired o-$LiMnO_2$ cathode and carbon anode. Charge/Discharge cycling was carried out for 50cycles. And impedance was measured at 1, 2, 5, 10, 30, 50cycle. During cycle test, the max discharge capacity was recorded 139mAh $g^{-1}$ at 10cycle.

  • PDF

Charge/discharge Properties As a Function of Synthetic Conditions of $LiMnO_2$ for Lithium Polymer Batteries (리튬 폴리머 전지용 $LiMnO_2$의 합성조건에 따른 충방전 특성)

  • Cho, Young-Jai;Kim, Jong-Uk;Park, Gye-Choon;Wee, Sung-Dong;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.541-544
    • /
    • 2001
  • Orthorhombic $LiMnO_2$ was synthesized by solid-state reaction using $LiOH{\cdot}H_{2}O$ and $Mn_{2}O_{3}$ as starting material. Its electrochemical properties as cathode in lithium batteries were examined. X-ray diiffraction revealed that the $LiMnO_2$ compound showed a well-defined orthorhombic phase of a space group with Pmnm. The capacity of $LiMnO_2$ agreed well with its specific surface area and grinding treatment was effective in improving cycling performance. For lithium polymer battery applications. the $LiMnO_2$ cell was characterized electrochemically by charge-discharge experiments. And the relationship between the characteristics of powder and electrochemical properties was studied in this research. A maximum discharge capacity of $160-170mAhg^{-1}$ for $LiMnO_2/Li$ cell was achieved.

  • PDF

Charge/discharge Properties As a Function of Synthetic Conditions of LiMnO$_2$ for Lithium Polymer Batteries (리튬 폴리머 전지용 LiMnO$_2$의 합성조건에 따른 충방전 특성)

  • 조영재;김종욱;박계춘;위성동;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.541-544
    • /
    • 2001
  • Orthorhombic LiMnO$_2$ was synthesized by solid-state reaction using LiOH$.$H$_2$O and Mn$_2$O$_3$ as starting material. Its electrochemical properties as cathode in lithium batteries were examined. X-ray diffraction revealed that the LiMnO$_2$ compound showed a well-defined orthorhombic phase of a space group with Pmnm. The capacity of LiMnO$_2$ agreed well with its specific surface area and grinding treatment was effective in improving cycling performance. For lithium polymer battery applications, the LiMnO$_2$ cell was characterized electrochemically by charge-discharge experiments. And the relationship between the characteristics of powder and electrochemical properties was studied in this research. A maximum discharge capacity of 160-170mAhg$^{-1}$ for LiMnO$_2$/Li cell was achieved

  • PDF

Electrochemical properties and Estimation of $LiMnO_{2}$ Active Material Synthesis for Secondary Batteries (2차 전지용 $LiMnO_{2}$ 활물질 합성의 전기화학적 특성과 평가)

  • Wee, Sung-Dong;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.210-215
    • /
    • 2002
  • This thesis is contents on the crystal grown by the solide phase method at $925^{\circ}C$ with orthorhombic structure that $LiMnO_{2}$ active material synthesised with precurse $Mn_{2}O_{3}$ and $LiOH.H_{2}O$ material to get three voltage level. The porosity analysis of the grown crystal in secondary batteries $LiMnO_{2}$ thin film is $1.323E+02\AA$ of the average pore diameter of powder particles and its structure to be taken the pore diameter was prepared. Adding voltage area to get properties of charge and discharge of which experiment result of $LiMnO_{2}$ thin film area 2.2V~4.3V, current and scan speed were 0.1mAh/g and $0.2mV/cm^{2}$ respectively, and properties of the charge and discharge to be got optimum experiment condition parameter and density rate of Li for analyze that unit discharge capacity with metal properties is 87mAh/g was 96.9[ppm] at 670.784[nm] wavelength, and density rate of Mn analyzed 837[ppm] at 257.610[nm]. It can be estimated the quality of thin film that wrong cell reject from the bottle of electrolyte. The results of SEM and XRD were the same that of original researchers.

  • PDF

Electrochemical properties of $LiCr_xMn_{1-x}O_2$ cathode materials for lithium ion battery (리튬 이온 이차전지용 $LiCr_xMn_{1-x}O_2$ 정극활물질의 전기 화학적 특성)

  • Jin, En-Mei;Jeon, Yeon-Su;Beak, Hyoung-Ryoul;Gu, Hal-Bon;Son, Myung-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.418-419
    • /
    • 2005
  • $\o-LiMnO_2$ is known to have poor cycle performance causing the irreversible phase transformation on cycling. In this paper, the effect of chemical substitution on improving cycle performance of $o-LiMnO_2$ was studied at the compositions of $LiCr_xMn_{1-x}O_2$(x=0, 0.1, 0.2, 0.4). XRD is showed that structure of $LiCr_xMn_{1-x}O_2$ transformed from orthorhombic to spinel according to the increase of substitute degree. For lithium ion battery applications, $LiCr_xMn_{1-x}O_2$/Li cell were characterized electrochemically by charge/discharge cycling.

  • PDF