• Title/Summary/Keyword: Ortho-rectified image

Search Result 11, Processing Time 0.024 seconds

Generation of the Ortho-Rectified Photo Map and Analysis of the Three-Dimensional Image Using the PKNU 2 Imagery (PKNU2호 영상을 이용한 정사영상 지도 제작 및 3차원 입체 분석)

  • Lee, Chang Hun;Choi, Chul Uong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.77-87
    • /
    • 2004
  • It is important for hydrographers to extract the accurate cross section of a river for the hydrographical analysis of the topography. Aerial photographs were used to extract the cross section of a river for the advantages of the accuracy and economical efficiency in this study, while the direct measurement has been used in existing studies. An ortho-rectified photo map using imageries taken by the PKNU 2 (High-resolution, multi-spectral, aerial photographic system developed by our laboratory) was generated using the surveyed data and a digital map. The cross section of a river that was obtained from the ortho-rectified by the surveyed Kinematic data of GPS was compared with the result using ImageStation stereo-plotter of corp. Z/I Imaging. As a result of this study, the RMSE in the ortho-rect process using the surveyed GPS data was lowered as from 5.5788 pixels (about 2m) to 2.84 (about 1m) in comparison with it in the process using a digital map. The surveyed kinematic GPS in extraction of the cross section of a river was excellent as 6.6cm of the planimetric and precision in the confidence level of 95%. The correlation coefficient between the result from the using stereo-plotter and the extraction of cross section of a river using aerial photos was 0.8 hydrographical acquisition of it using PKNU 2 imagery will be possible.

  • PDF

Development of New Photogrammetric Software for High Quality Geo-Products and Its Performance Assessment

  • Jeong, Jae-Hoon;Lee, Tae-Yoon;Rhee, Soo-Ahm;Kim, Hyeon;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.3
    • /
    • pp.319-327
    • /
    • 2012
  • In this paper, we introduce a newly developed photogrammetric software for automatic generation of high quality geo-products and its performance assessment carried out using various satellite images. Our newly developed software provides the latest techniques of an optimized sensor modelling, ortho-image generation and automated Digital Elevation Model (DEM) generation for diverse remote sensing images. In particular, images from dual- and multi-sensor images can be integrated for 3D mapping. This can be a novel innovation toward a wider applicability of remote sensing data, since 3D mapping has been limited within only single-sensor so far. We used Kompsat-2, Ikonos, QuickBird, Spot-5 high resolution satellite images to test an accuracy of 3D points and ortho-image generated by the software. Outputs were assessed by comparing reliable reference data. From various sensor combinations 3D mapping were implemented and their accuracy was evaluated using independent check points. Model accuracy of 1~2 pixels or better was achieved regardless of sensor combination type. The high resolution ortho-image results are consistent with the reference map on a scale of 1:5,000 after being rectified by the software and an accuracy of 1~2 pixels could be achieved through quantitative assessment. The developed software offers efficient critical geo-processing modules of various remote sensing images and it is expected that the software can be widely used to meet the demand on the high-quality geo products.

Satellite Image Processing Software for Value-Added Products

  • Lee, Hae-Yeoun;Park, Won-Kyu;Kim, Seung-Bum;Kim, Tae-Jung;Yoon, Tae-Hun;Shin, Dong-Seok;Lee, Heung-Kyu
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.4
    • /
    • pp.339-348
    • /
    • 1999
  • To extract value-added products which are important in scientific area and practical life, e.g. digital elevation models, ortho-rectified images and geometric corrected images, Satellite Technology Research Center at Korea Advanced Institute of Science and Technology has developed a satellite image processing software called "Valadd-Pro". In this paper, "Valadd-Pro" software is briefly introduced and its main components such as precise geometric correction, ortho-rectification and digital elevation model extraction component are described. The performance of "Valadd-Pro" software was assessed on 10m resolution 6000 $\times$ 6000 SPOT panchromatic images (60km $\times$ 60km) using ground control points from GPS measurements. The height accuracy was measured by comparing our results with 100m resolution $DTEDs^{1)}$ produced by USGS and 60m resolution DEMs generated from digitized contours produced by National Geography Institute. Also, to show the superior performance of "Valadd-Pro" software, we compared the performance with that of commonly used PCI$\circledR$ commercial software. Based on the results, the geometric correction of "Valadd-Pro" software needs fewer ground control points than that of PCI$\circledR$ software and the ortho-rectification of "Valadd-Pro" software shows similar performance to that of PCI$\circledR$ software. In the digital elevation model extraction, "Valadd-Pro" software is two times more accurate and four times faster than PCI$\circledR$ software.ccurate and four times faster than PCI$\circledR$ software.

Development of Rock Slope Survey and Analysis System using GIS

  • Park, H. J.;Chang, B. S.;Lee, S.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.144-146
    • /
    • 2003
  • Techniques for rock slope management and assessment must be developed for the prevention and mitigation of rock fall hazards. To enable this, the rock discontinuity such as fault and joint data must be surveyed, analysed and managed. For this, the discontinuities were detected by automatic and semi-automatic method using DEM and ortho-rectified image of rock slope and the rock slope analysis and management system was developed using GIS. Using the system, slope locations and discontinuities data were constructed to spatial database. The system is consist of ‘Data Management’, ‘Rock Slope DB’, ‘Basic Information’, ‘Image Processing’, ‘Image Analys ing’, ‘Edit’, ‘View’, ‘Theme’, ‘Graphic’, ‘Window’ and ‘Help’. The system was developed using avenue of ArcView 3.2.

  • PDF

RNCC-based Fine Co-registration of Multi-temporal RapidEye Satellite Imagery (RNCC 기반 다시기 RapidEye 위성영상의 정밀 상호좌표등록)

  • Han, Youkyung;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.581-588
    • /
    • 2018
  • The aim of this study is to propose a fine co-registration approach for multi-temporal satellite images acquired from RapidEye, which has an advantage of availability for time-series analysis. To this end, we generate multitemporal ortho-rectified images using RPCs (Rational Polynomial Coefficients) provided with RapidEye images and then perform fine co-registration between the ortho-rectified images. A DEM (Digital Elevation Model) extracted from the digital map was used to generate the ortho-rectified images, and the RNCC (Registration Noise Cross Correlation) was applied to conduct the fine co-registration. Experiments were carried out using 4 RapidEye 1B images obtained from May 2015 to November 2016 over the Yeonggwang area. All 5 bands (blue, green, red, red edge, and near-infrared) that RapidEye provided were used to carry out the fine co-registration to show their possibility of being applicable for the co-registration. Experimental results showed that all the bands of RapidEye images could be co-registered with each other and the geometric alignment between images was qualitatively/quantitatively improved. Especially, it was confirmed that stable registration results were obtained by using the red and red edge bands, irrespective of the seasonal differences in the image acquisition.

Laboratory experiment of evolution of rip current according to the duration of successive ends of breaking wave crests (연속 쇄파선 끝단 지속시간에 따른 이안류 발달 수리실험 연구)

  • Choi, Junwoo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.1
    • /
    • pp.39-48
    • /
    • 2021
  • The experiment of rip current at successive ends of breaking wave crests was conducted in a laboratory wave basin, and its time-varying evolution according to incident wave durations was observed by using ortho-rectified images. The experiment utilized the generation of a quasi nodal line of the honeycomb-pattern waves (i.e., intersecting wave trains) formed by out-of-phase motion of two piston-type wave makers arranged in the transverse direction, instead of the original honeycomb pattern waves which are generated when two wave trains propagate with slightly different wave directions. The particle moving distance and velocity caused by the rip current were measured by using the particle tracking technique. As a result, the rip current was survived for a while even without incident waves after its generation due to several successive ends of wave crests, and it moved the particles further out to sea.

Aerosol Optical Thickness Retrieval Using a Small Satellite

  • Wong, Man Sing;Lee, Kwon-Ho;Nichol, Janet;Kim, Young J.
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.605-615
    • /
    • 2010
  • This study demonstrates the feasibility of small satellite, namely PROBA platform with the compact high resolution imaging spectrometer (CHRIS), for aerosol retrieval in Hong Kong. The rationale of our technique is to estimate the aerosol reflectances by decomposing the Top of Atmosphere (TOA) reflectances from surface reflectance and Rayleigh path reflectances. For the determination of surface reflectances, the modified Minimum Reflectance Technique (MRT) is used on three winter ortho-rectified CHRIS images: Dec-18-2005, Feb-07-2006, Nov-09-2006. For validation purpose, MRT image was compared with ground based multispectral radiometer measurements and atmospherically corrected Landsat image. Results show good agreements between CHRIS-derived surface reflectance and both by ground measurement data as well as by Landsat image (r>0.84). The Root-Mean-Square Errors (RMSE) at 485, 551 and 660nm are 0.99%, 1.19%, and 1.53%, respectively. For aerosol retrieval, Look Up Tables (LUT) which are aerosol reflectances as a function of various AOT values were calculated by SBDART code with AERONET inversion products. The CHRIS derived Aerosol Optical Thickness (AOT) images were then validated with AERONET sunphotometer measurements and the differences are 0.05~0.11 (error=10~18%) at 440nm wavelength. The errors are relatively small compared to those from the operational moderate resolution imaging spectroradiometer (MODIS) Deep Blue algorithm (within 30%) and MODIS ocean algorithm (within 20%).

A Pilot Project on Producing Topographic Map Using Medium Resolution Satellite Image (중해상도 위성영상을 이용한 지도제작 시험연구)

  • 박희주;한상득;안기원;박병욱
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.4
    • /
    • pp.373-383
    • /
    • 2001
  • This study conducted pilot mapping project to know the possibility of mapping with medium resolution satellite imageries. For this purpose, mapping experiments were conducted with each stereo model imageries of SPOT, KOMPSAT, and IRS- lC. And positional accuracy, analysis of detectable and describable features, and comparison with existing digital map were checked, possible mapping scale and cost analysis were conducted with these results. Regarding SPOT imagery, digital photogrammetric workstation was used for stereoplotting. Regarding KOMPSAT and IRS-lC imageries, because there were data format support problems. head-up digitizing was performed with ortho imageries rectified with DEMs generated by image matching. The results of experiments show that such features as wide road, river, coast line, etc are possible to detect and depict but many other features are not for SPOT, KOMPSAT, and IRS-lC imageries. On the aspect of mapping, therefore, SPOT is available for 1/50,000 topographic map revision, KOMPSAT and IRS-lC for 1/25.000 topographic map revision.

  • PDF

A LSPIV Measurement of the Unsteady Rip Current at Successive Ends of Breaking Wave Crests (연속된 쇄파 파봉선 끝단의 비정상 이안류 LSPIV 계측연구)

  • Choi, Junwoo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.411-419
    • /
    • 2020
  • The experiment of unsteady rip current generated at the successive ends of breaking wave crests of honeycomb pattern waves was conducted in a laboratory wave basin, and its time-varying evolution was observed by using ortho-rectified images. The present experiment utilized the generation of a quasi nodal line of the honeycomb-pattern waves formed by out-of-phase motion of two piston-type wavemakers arranged in the transverse direction, instead of the original honeycomb pattern waves which are generated when two wave trains propagate with slightly different wave directions. The velocities of rip current were measured by using the LSPIV (Large-Scale Particle Image Velocimetry) technique. As a result, the unsteady rip current was generated between successive ends of wave crests, and evolved with its shear fluctuations in this experiment. Also, the time series of LSPIV velocity of the unsteady rip current showd its short component due to waves and its long component due to wave-induced currents.

Photorealistic Building Modelling and Visualization in 3D GIS (3차원 GIS의 현실감 부여 빌딩 모델링 및 시각화에 관한 연구)

  • Song, Yong Hak;Sohn, Hong Gyoo;Yun, Kong Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.311-316
    • /
    • 2006
  • Despite geospatial information systems are widely used in many different fields as a powerful tool for spatial analysis and decision-making, their capabilities to handle realistic 3-D urban environment are very limited. The objective of this work is to integrate the recent developments in 3-D modeling and visualization into GIS to enhance its 3-D capabilities. To achieve a photorealistic view, building models are collected from a pair of aerial stereo images. Roof and wall textures are respectively obtained from ortho-rectified aerial image and ground photography. This study is implemented by using ArcGIS as the work platform and ArcObjects and Visual Basic as development tools. Presented in this paper are 3-D geometric modeling and its data structure, texture creation and its association with the geometric model. As the results, photorealistic views of Purdue University campus are created and rendered with ArcScene.