• Title/Summary/Keyword: Organoids

Search Result 54, Processing Time 0.025 seconds

Neural Organoids, a Versatile Model for Neuroscience

  • Lee, Ju-Hyun;Sun, Woong
    • Molecules and Cells
    • /
    • v.45 no.2
    • /
    • pp.53-64
    • /
    • 2022
  • Three-dimensional cultures of human neural tissue/organlike structures in vitro can be achieved by mimicking the developmental processes occurring in vivo. Rapid progress in the field of neural organoids has fueled the hope (and hype) for improved understanding of brain development and functions, modeling of neural diseases, discovery of new drugs, and supply of surrogate sources of transplantation. In this short review, we summarize the state-of-the-art applications of this fascinating tool in various research fields and discuss the reality of the technique hoping that the current limitations will soon be overcome by the efforts of ingenious researchers.

Guidelines for Manufacturing and Application of Organoids: Skin

  • Seunghee Lee;Yeri Alice Rim;Juryun Kim;Su Hyon Lee;Hye Jung Park;Hyounwoo Kim;Sun-Ju Ahn;Ji Hyeon Ju
    • International Journal of Stem Cells
    • /
    • v.17 no.2
    • /
    • pp.182-193
    • /
    • 2024
  • To address the limitations of animal testing, scientific research is increasingly focused on developing alternative testing methods. These alternative tests utilize cells or tissues derived from animals or humans for in vitro testing, as well as artificial tissues and organoids. In western countries, animal testing for cosmetics has been banned, leading to the adoption of artificial skin for toxicity evaluation, such as skin corrosion and irritation assessments. Standard guidelines for skin organoid technology becomes necessary to ensure consistent data and evaluation in replacing animal testing with in vitro methods. These guidelines encompass aspects such as cell sourcing, culture techniques, quality requirements and assessment, storage and preservation, and organoid-based assays.

Indole-3-Carbinol Promotes Goblet-Cell Differentiation Regulating Wnt and Notch Signaling Pathways AhR-Dependently

  • Park, Joo-Hung;Lee, Jeong-Min;Lee, Eun-Jin;Hwang, Won-Bhin;Kim, Da-Jeong
    • Molecules and Cells
    • /
    • v.41 no.4
    • /
    • pp.290-300
    • /
    • 2018
  • Using an in vitro model of intestinal organoids derived from intestinal crypts, we examined effects of indole-3-carbinol (I3C), a phytochemical that has anticancer and aryl hydrocarbon receptor (AhR)-activating abilities and thus is sold as a dietary supplement, on the development of intestinal organoids and investigated the underlying mechanisms. I3C inhibited the in vitro development of mouse intestinal organoids. Addition of ${\alpha}$-naphthoflavone, an AhR antagonist or AhR siRNA transfection, suppressed I3C function, suggesting that I3C-mediated interference with organoid development is AhR-dependent. I3C increased the expression of Muc2 and lysozyme, lineage-specific genes for goblet cells and Paneth cells, respectively, but inhibits the expression of IAP, a marker gene for enterocytes. In the intestines of mice treated with I3C, the number of goblet cells was reduced, but the number of Paneth cells and the depth and length of crypts and villi were not changed. I3C increased the level of active nonphosphorylated ${\beta}$-catenin, but suppressed the Notch signal. As a result, expression of Hes1, a Notch target gene and a transcriptional repressor that plays a key role in enterocyte differentiation, was reduced, whereas expression of Math1, involved in the differentiation of secretory lineages, was increased. These results provide direct evidence for the role of AhR in the regulation of the development of intestinal stem cells and indicate that such regulation is likely mediated by regulation of Wnt and Notch signals.

Evaluation of porcine intestinal organoids as an in vitro model for mammalian orthoreovirus 3 infection

  • Se-A Lee;Hye Jeong Lee;Na-Yeon Gu;Yu-Ri Park;Eun-Ju Kim;Seok-Jin Kang;Bang-Hun Hyun;Dong-Kun Yang
    • Journal of Veterinary Science
    • /
    • v.24 no.4
    • /
    • pp.53.1-53.12
    • /
    • 2023
  • Background: Mammalian orthoreovirus type 3 (MRV3), which is responsible for gastroenteritis in many mammalian species including pigs, has been isolated from piglets with severe diarrhea. However, the use of pig-derived cells as an infection model for swine-MRV3 has rarely been studied. Objectives: This study aims to establish porcine intestinal organoids (PIOs) and examine their susceptibility as an in vitro model for intestinal MRV3 infection. Methods: PIOs were isolated and established from the jejunum of a miniature pig. Established PIOs were characterized using polymerase chain reaction (PCR) and immunofluorescence assays (IFAs) to confirm the expression of small intestine-specific genes and proteins, such as Lgr5, LYZI, Mucin-2, ChgA, and Villin. The monolayered PIOs and three-dimensional (3D) PIOs, obtained through their distribution to expose the apical surface, were infected with MRV3 for 2 h, washed with Dulbecco's phosphate-buffered saline, and observed. Viral infection was confirmed using PCR and IFA. We performed quantitative real-time reverse transcription-PCR to assess changes in viral copy numbers and gene expressions linked to intestinal epithelial genes and antiviral activity. Results: The established PIOs have molecular characteristics of intestinal organoids. Infected PIOs showed delayed proliferation with disruption of structures. In addition, infection with MRV3 altered the gene expression linked to intestinal epithelial cells and antiviral activity, and these effects were observed in both 2D and 3D models. Furthermore, viral copy numbers in the supernatant of both models increased in a time-dependent manner. Conclusions: We suggest that PIOs can be an in vitro model to study the infection mechanism of MRV3 in detail, facilitating pharmaceutical development.

Human Pluripotent Stem Cell-Derived Alveolar Organoids: Cellular Heterogeneity and Maturity

  • Ji-Hye Jung;Se-Ran Yang;Woo Jin Kim;Chin Kook Rhee;Seok-Ho Hong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.87 no.1
    • /
    • pp.52-64
    • /
    • 2024
  • Chronic respiratory diseases such as idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and respiratory infections injure the alveoli; the damage evoked is mostly irreversible and occasionally leads to death. Achieving a detailed understanding of the pathogenesis of these fatal respiratory diseases has been hampered by limited access to human alveolar tissue and the differences between mice and humans. Thus, the development of human alveolar organoid (AO) models that mimic in vivo physiology and pathophysiology has gained tremendous attention over the last decade. In recent years, human pluripotent stem cells (hPSCs) have been successfully employed to generate several types of organoids representing different respiratory compartments, including alveolar regions. However, despite continued advances in three-dimensional culture techniques and single-cell genomics, there is still a profound need to improve the cellular heterogeneity and maturity of AOs to recapitulate the key histological and functional features of in vivo alveolar tissue. In particular, the incorporation of immune cells such as macrophages into hPSC-AO systems is crucial for disease modeling and subsequent drug screening. In this review, we summarize current methods for differentiating alveolar epithelial cells from hPSCs followed by AO generation and their applications in disease modeling, drug testing, and toxicity evaluation. In addition, we review how current hPSC-AOs closely resemble in vivo alveoli in terms of phenotype, cellular heterogeneity, and maturity.

Novel Alternative Methods in Toxicity Testing

  • Satoh, Tetsuo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.129-130
    • /
    • 1994
  • The science of toxicology is the understanding of the mechanisms by which exogenous agents produce deleterious effects in biological systems. The actions of chemicals such as drugs are ultimately exerted at the cellular and gene levels. Over the past decade. several in vitro alternative methods such as cultured cells for assessing the toxicity of various xenobiotics have been proposed to reduce the use of animals. In this workshop three advanced methods will be presented. These methods are novel important models for toxicologic studies. Dr. Tabuchis group has establishcd two immortalized gastric surface mucosa cell lines from the pminary cultore of gastric fundic mucosal cells of adult transgenic mice harboring a temperature sensitive simian virus 40 large T-anugen gene. As the immortalized cell lines of various tissues possess unique characteristics to maintain their normal functions for several months, these cell lines are extremely useful for not only toxicity testing but also pharmacological screening in new drug development. Professor Funatsu have studied the formation of spherical multicelluar aggregates of adult rat hepatocytes(spheroid) having tissue like structure. The sphcroid shown thre is a prototype module of an artificial liver support system. Thus, the urea synthesis activity of the artificial liver was maintained at least to days in 100% rat blood plasma. Dr. Takezawa and his coworkers have developed a novel culture system of multicellular spheroids considered 〃organoids〃 by utilizing a thermo-responsive polymer as a substratum of anchorage dependent cells. His final goal is to reconstitute the organoids of various normal organs, e.g., liver, skin etc. and also abnormal deseased organs such as tumor.

  • PDF

Stimulatory Anticancer Effect of Resveratrol Mediated by G Protein-Coupled Estrogen Receptor in Colorectal Cancer

  • Nayun Kim;Junhye Kwon;Ui Sup Shin;Joohee Jung
    • Biomolecules & Therapeutics
    • /
    • v.31 no.6
    • /
    • pp.655-660
    • /
    • 2023
  • Colorectal cancer (CRC) is one of the most high-risk cancers; however, it has been suggested that estrogen signaling in CRC could have a protective effect. Therefore, we focused on the function of the G protein-coupled estrogen receptor (GPER) among the estrogen receptors in CRC. In this study, we investigated the therapeutic effect of resveratrol via GPER in CRC (RKO and WiDr) cells, CRC cell-derived xenograft models, and organoids (30T and 33T). Resveratrol significantly suppressed cell viability and proliferation in highly GPER-expressing RKO cells compared to that in low GPER-expressing WiDr cells. In xenograft models, resveratrol also delayed tumor growth and exhibited a high survival rate depending on GPER expression in RKO-derived tumors. Furthermore, resveratrol significantly inhibited the viability of organoids with high GPER expression. Additionally, the anticancer effect of resveratrol on CRC showed that resveratrol rapidly responded to GPER, while increasing the expression of p-ERK and Bax and cleaving PARP proteins.

Guidelines for Packaging, Transport, and Storage of Source Cells for Organoids

  • Sungin Lee;Dayeon Kwon;Han Byeol Lee;Sooyeon Jeon;Chihye Park;Tae Sung Kim;Jin Hee Lee;Il Ung Oh;Sun-Ju Ahn
    • International Journal of Stem Cells
    • /
    • v.17 no.2
    • /
    • pp.113-119
    • /
    • 2024
  • This report presents guidelines for the systematic management of packaging, storage, transportation, and traceability of source cells used for organoid research. Given the important role of source cells in organoid studies, it is important to ensure the preservation of their quality and integrity throughout transportation and distribution processes. The proposed guidelines, therefore, call for a cohesive strategy through these stages to minimize the risks of contamination, deterioration, and loss-threats that significantly compromise the safety, efficacy, and efficiency of source cells. Central to these guidelines is the quality control measures that include roles and responsibilities across the entire supply chain, with recommendations specific to packaging materials, transportation facilities, and storage management. Furthermore, the need for an integrated management system is emphasized, spanning from source cell collection to the final application. This system is crucial for maintaining the traceability and accountability of source cells, facilitating the sharing, distribution, and utilization on a global scale, and supporting to advance organoid research and development.

Study of Rat Mammary Epithelial Stem Cells In Vivo and In Vitro (생체 및 시험관에서 유선 상피 모세포의 분리와 동정)

  • Nam Deuk Kim;Kee-Joo Paik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.3
    • /
    • pp.470-486
    • /
    • 1995
  • Mammary epithelial cells contain a subpopulation of cells with a large proliferativ potential which are responsible for the maintenance of glandular cellularity and are the progenitor cells of mammary cancer. These clonogens give rise to multicellular clonal alveolar or ductal units(AU or DU) on transplantation and hormonal stimulation. To isolate putative mammary clonogens, enzymatically monodispersed rat mammary epithelial cells from organoid cultures and from intact glands are sorted by flow cytometry according to their affinity for FITC labeled peanut lectin(PNA) and PE labeled anti-Thy-1.1 antibody(Thy-1.1) into four subpopulations : cells negative to both PNA and Thy-1.1(B-), PNA+cells, Thy-1.1+cells, and cells positive to both reagents(B+). The in vivo transplantation assays indicate that the clonogenic fractions of PNA+cells from out-growths of organoids in primary cultures for three days in complete hormone medium(CHM) are significantly higher than those of cells from other subpopulations derived from cultrues or from intact glands. Extracellular matrix(ECM) is a complex of several proteins that regulated cell function ; its role in cell growth and differentiation and tissue-specific gene expression. It can act as a positive as well as a negative regulator of cellular differentiation depending on the cell type and the genes studied. Regulation by ECM is closely interrelated with the action of other regulators of cellular function, such as growth factors and hormones. Matrigel supports the growth and development of several different multicellular colonies from mammary organoids and from monodispersed epithelial cells in culture. Several types of colonies are observed including stellate colonies, duct-like structures, two- and three-dimensional web structures, squamous organoids, and lobulo-duct colonies. Organoids have the greatest proliferative potential and formation of multi-cellular structures. Phase contrast micrographs demonstrate extensive intracellular lipid accumulation within the web structures and some of duct-like colonies. At the immunocytochemical and electron micrograph level, casein proteins are predominantly localized near the apical surface of the cells or in the lumen of duct-like or lobulo-duct colonies. Squamous colonies are comprised of several layers of squamous epithelium surrounding keratin pearls as is typical fo squamous metaplasia(SM). All-trans retinoic acid(RA) inhibits the growth of SM. The frequency of lobulo-ductal colony formation increased with the augmentation of RA concentration in these culture conditions. The current study models could provide powerful tools not only for understanding cell growth and differentiation of epithelial cells, but also for the isolation and characterization of mammary clonogenic stem cells.

  • PDF

Antiproliferative Activity of Piceamycin by Regulating Alpha-Actinin-4 in Gemcitabine-Resistant Pancreatic Cancer Cells

  • Jee-Hyung Lee;Jin Ho Choi;Kyung-Min Lee;Min Woo Lee;Ja-Lok Ku;Dong-Chan Oh;Yern-Hyerk Shin;Dae Hyun Kim;In Rae Cho;Woo Hyun Paik;Ji Kon Ryu;Yong-Tae Kim;Sang Hyub Lee;Sang Kook Lee
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.123-135
    • /
    • 2024
  • Although gemcitabine-based regimens are widely used as an effective treatment for pancreatic cancer, acquired resistance to gemcitabine has become an increasingly common problem. Therefore, a novel therapeutic strategy to treat gemcitabine-resistant pancreatic cancer is urgently required. Piceamycin has been reported to exhibit antiproliferative activity against various cancer cells; however, its underlying molecular mechanism for anticancer activity in pancreatic cancer cells remains unexplored. Therefore, the present study evaluated the antiproliferation activity of piceamycin in a gemcitabine-resistant pancreatic cancer cell line and patient-derived pancreatic cancer organoids. Piceamycin effectively inhibited the proliferation and suppressed the expression of alpha-actinin-4, a gene that plays a pivotal role in tumorigenesis and metastasis of various cancers, in gemcitabine-resistant cells. Long-term exposure to piceamycin induced cell cycle arrest at the G0/G1 phase and caused apoptosis. Piceamycin also inhibited the invasion and migration of gemcitabine-resistant cells by modulating focal adhesion and epithelial-mesenchymal transition biomarkers. Moreover, the combination of piceamycin and gemcitabine exhibited a synergistic antiproliferative activity in gemcitabine-resistant cells. Piceamycin also effectively inhibited patient-derived pancreatic cancer organoid growth and induced apoptosis in the organoids. Taken together, these findings demonstrate that piceamycin may be an effective agent for overcoming gemcitabine resistance in pancreatic cancer.