• Title/Summary/Keyword: Organizing

검색결과 2,000건 처리시간 0.029초

특발성간질성폐렴의 방사선학적 소견 (Idiopathic Interstitial Pneumonias : Radiologic Findings)

  • 이경수
    • Tuberculosis and Respiratory Diseases
    • /
    • 제54권2호
    • /
    • pp.129-144
    • /
    • 2003
  • Usual interstitial pneumonia/Idiopathic pulmonary fibrosis, nonspecific interstitial pneumonia, Cryptogenic organizing pneumonia(bronchiolitis obliterans organizing pneumonia : BOOP), Acute interstitial pneumonia, respiratory bronchiolitis-associated interstitial lung disease, Desquamative interstitial pneumonia, Lymphoid interstitial pneumonia.

비선형 주성분해석과 신경망에 기반한 비선형 PLS (Non-linear PLS based on non-linear principal component analysis and neural network)

  • 손정현;정신호;송상옥;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.394-394
    • /
    • 2000
  • This Paper proposes a new nonlinear partial least square method that extends the linear PLS. Proposed nonlinear PLS uses self-organizing feature map as PLS outer relation and multilayer neural network as PLS inner regression method.

  • PDF

퍼지 보상기와 자기구성 신경회로망을 이용한 매니퓰레이터의 역기구학 해에 관한 연구 (A Study on the Soiution of Inverse Kinematic of Manipulator using Self-Organizing Neural Network and Fuzzy Compensator)

  • 김동희;이수흠;신위재
    • 융합신호처리학회논문지
    • /
    • 제2권3호
    • /
    • pp.79-85
    • /
    • 2001
  • 본 논문에서는 퍼지 보상기와 자기구성 신경회로망을 이용하여 3축 매니퓰레이터의 역 기구학 해를 구하는 방법을 제안한다. 가우시안 위치 함수를 활성화 함수로 사용하는 자기구성 신경회로망은 학습 시작시 1개의 은닉층 노드를 가지고 학습을 하면서 점차적으로 은닉층의 노드수를 증가시킴으로서 최적의 노드수를 얻을 수 있으며, 퍼지 보상기는 신경회로망의 양호한 학습비를 얻는다. 이와 같이 시스템을 구성하여 빠른 학습속도와 학습비의 개선 그리고 빠른 정상상태로의 수렴을 확인하였다.

  • PDF

병렬처리를 통한 정규혼합분포의 추정 (Parallel Implementations of the Self-Organizing Network for Normal Mixtures)

  • 이철희;안성만
    • Communications for Statistical Applications and Methods
    • /
    • 제19권3호
    • /
    • pp.459-469
    • /
    • 2012
  • 본 연구에서는 자기조직화 신경망이 필요한 노드만을 가지고 최적화하여 정규혼합분포를 추정하는 모형(Ahn과 Kim, 2011)을 Java언어에서 제공하는 스레드(thread)를 기반으로, 멀티코어 컴퓨팅환경에서 병렬처리방식으로 구현하여 순차처리방식에 비해 짧은 연산시간으로 정규혼합모형의 추정이 가능함을 보이려고 한다. 이를 위하여 Ahn과 Kim이 제안한 모형을 바탕으로 두 가지의 병렬처리 방법을 제안하고 그 성능을 평가하였다. 병렬처리 방법은 Java의 멀티스레드를 이용하여 구현되었으며, 모의실험을 통하여 제안한 모형이 순차처리방식과 비교하여 수렴속도가 빠름을 확인하였다.

스카라형 이중 아암 로봇의 실시간 퍼지제어기 실현 (Implementation of Real-Time Fuzzy Controller for SCARA Type Dual-Arm Robot)

  • 김홍래;한성현
    • 제어로봇시스템학회논문지
    • /
    • 제10권12호
    • /
    • pp.1223-1232
    • /
    • 2004
  • We present a new technique to the design and real-time implementation of fuzzy control system basedon digital signal processors in order to improve the precision and robustness for system of industrial robot in this paper. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The TMS320C80 is used in implementing real time fuzzy control to provide an enhanced motion control for robot manipulators. In this paper, a Self-Organizing Fuzzy Controller for the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variables of the controller. In the synthesis of a Fuzzy Logic Controller, one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult Self-Organizing Fuzzy Controller is proposed for a hierarchical control structure consisting of basic and high levels that modify control rules. The proposed Self-Organizing Fuzzy Controller scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Performance of the SOFC is illustrated by simulation and experimental results for a Dual-Arm robot with eight joints.

Application of An Adaptive Self Organizing Feature Map to X-Ray Image Segmentation

  • Kim, Byung-Man;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1315-1318
    • /
    • 2003
  • In this paper, a neural network based approach using a self-organizing feature map is proposed for the segmentation of X ray images. A number of algorithms based on such approaches as histogram analysis, region growing, edge detection and pixel classification have been proposed for segmentation of general images. However, few approaches have been applied to X ray image segmentation because of blur of the X ray image and vagueness of its edge, which are inherent properties of X ray images. To this end, we develop a new model based on the neural network to detect objects in a given X ray image. The new model utilizes Mumford-Shah functional incorporating with a modified adaptive SOFM. Although Mumford-Shah model is an active contour model not based on the gradient of the image for finding edges in image, it has some limitation to accurately represent object images. To avoid this criticism, we utilize an adaptive self organizing feature map developed earlier by the authors.[1] It's learning rule is derived from Mumford-Shah energy function and the boundary of blurred and vague X ray image. The evolution of the neural network is shown to well segment and represent. To demonstrate the performance of the proposed method, segmentation of an industrial part is solved and the experimental results are discussed in detail.

  • PDF

다중-홉 선박 통신 네트워크를 위한 애드혹 자율 구성 TDMA 방식의 수율 성능 분석 (Throughput Analysis of ASO-TDMA in Multi-hop Maritime Communication Network)

  • 조구민;윤창호;강충구
    • 한국통신학회논문지
    • /
    • 제37B권9호
    • /
    • pp.741-749
    • /
    • 2012
  • 항해 중인 선박과 육상기지국간에 VHF 대역을 통해 다중-홉 데이터 통신을 수행하기 위해 애드-혹 자율 구성 TDMA (Ad Hoc Self-Organizing TDMA: ASO-TDMA) 방식이 제안된 바 있으며, 이를 통해 해로를 따라 넓은 영역에 걸쳐 항해 중인 선박들이 분산적으로 무선 자원을 공유하면서 다중-홉 애드-혹 네트워크를 구성할 수 있다. 본 논문에서는 마코프 체인 모델을 기반으로 ASO-TDMA 방식 매체접근제어 프로토콜의 평균 수율 성능을 분석한다. 또한, 모의실험을 통해 수학적 분석 결과를 검증하고, 각 홉 영역에서 부프레임의 크기와 선박의 수에 따라 수율을 최대화하기 위한 최적의 전송률이 존재함을 보인다.

A New Architecture of Genetically Optimized Self-Organizing Fuzzy Polynomial Neural Networks by Means of Information Granulation

  • Park, Ho-Sung;Oh, Sung-Kwun;Ahn, Tae-Chon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1505-1509
    • /
    • 2005
  • This paper introduces a new architecture of genetically optimized self-organizing fuzzy polynomial neural networks by means of information granulation. The conventional SOFPNNs developed so far are based on mechanisms of self-organization and evolutionary optimization. The augmented genetically optimized SOFPNN using Information Granulation (namely IG_gSOFPNN) results in a structurally and parametrically optimized model and comes with a higher level of flexibility in comparison to the one we encounter in the conventional FPNN. With the aid of the information granulation, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. The GA-based design procedure being applied at each layer of genetically optimized self-organizing fuzzy polynomial neural networks leads to the selection of preferred nodes with specific local characteristics (such as the number of input variables, the order of the polynomial, a collection of the specific subset of input variables, and the number of membership function) available within the network. To evaluate the performance of the IG_gSOFPNN, the model is experimented with using gas furnace process data. A comparative analysis shows that the proposed IG_gSOFPNN is model with higher accuracy as well as more superb predictive capability than intelligent models presented previously.

  • PDF

동적 가우시안 함수를 이용한 Kohonen 네트워크 수렴속도 개선 (Improved Rate of Convergence in Kohonen Network using Dynamic Gaussian Function)

  • 길민욱;이극
    • 한국컴퓨터정보학회논문지
    • /
    • 제7권4호
    • /
    • pp.204-210
    • /
    • 2002
  • 자기조직화 지도(self-organizing feature map)는 학습시 수렴하기 위하여 많은 입력패턴을 필요로 하는 단점이 있다. 본 논문에서는 자기조직화 지도 학습시 학습률이 일정한 이웃 상호작용 집합을 동적 가우시안 함수로 변환하여 수렴속도와 수렴도를 개선할 수 있는 방법을 제안한다. 제안한 방법은 이웃 상호작용 함수로 사용된 가우시안 함수의 편차와 폭을 학습 회수에 따라 감소하는 동적 성질과 승자 뉴런으로부터의 위상학적 위치에 따라 각기 다른 학습률을 갖도록 하였다. 따라서 본 논문에서는 자기조직화 지도의 수렴속도와 수렴도를 향상시켰다.

  • PDF

바람직한 제어 방향의 학습을 통한 퍼지 제어기의 자기 구성방법 (A Method of Self-Organizing for Fuzzy Logic Controller Through Learning of the Proper Directioin of Control)

  • 이연정;최봉열
    • 한국지능시스템학회논문지
    • /
    • 제7권3호
    • /
    • pp.21-33
    • /
    • 1997
  • 본 논문에서는 바람직한 제어 방향의 학습을 통한 퍼지 제어기의 새로운 자기 구성 방법을 제안한다. 기울기 강하법에 기반하여 특성을 모르는 동적 플랜트에 대한 퍼지 제어기를 자기 구성할 때 풀어야할 문제중 하나는 오차를 줄이도록 하는 바람직한 제어입력의 변화방향을 알아내는 것이다. 이 문제를 해결하기 위한 방법으로서, 제어입력에 따른 오차의 변화 방향에 대한 대표 값을 분할된 상태영역에 할당하고, 반복적인 시행을 통해 강화 학습된 이 대표값을 이용하여 퍼지 제어 규칙을 학습하는 방법을 제안하였다. 제안된 자기구성 퍼지제어기는 간단한 구조를 가질 뿐 아니라 설계하기도 쉬운 장점을 갖는다. 제안된 방법의 타당성은 역진자 시스템에 대한 모의 실험을 통하여 검증하였다.

  • PDF