• Title/Summary/Keyword: Organic-inorganic Hybrid

Search Result 369, Processing Time 0.031 seconds

Application of Hybrid Polymeric Complexes to Solid State and Materials Chemistry

  • Josik Portier;Guy Campet;Nadine Treuil;Armel Poquet;Kim, Young Il;Kwon, Soon Jae;Kwak, Seo Young;Choy, Jin Ho
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.4
    • /
    • pp.487-500
    • /
    • 1998
  • A bird's-eye view on preparation, structure and properties of polymeric complexes in the field of Inorganic-Organic-Hybrids is presented in the view point of solid state and materials chemistry. These materials are useful precursors for preparing nanoparticles and fine grain oxides. Some of them are electroactive and are used as protonic or lithium electrolytes, electrochromic materials or membranes for sensors and actuators. New results on bio-hybrids, a class of material not far from polymeric complexes, are also described.

  • PDF

Effect of Polyhedral Oligomeric Silsesquioxane on Cure Characterization of an Epoxy/Amine System (에폭시/아민계의 경화 특성에 미치는 Polyhedral Oligomeric Silsesquioxane의 영향)

  • Gu, Puzhong;Lee, Jong Keun
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.41-46
    • /
    • 2013
  • The glass transition temperature ($T_g$) and conversion (${\alpha}$) were measured for a diglycidyl ether of bisphenol A (DGEBA) epoxy/aromatic amine system incorporated with an organic-inorganic hybrid molecule, polyhedral oligomeric silsesquioxane (POSS). Samples isothermally cured at varying cure temperatures and times were analyzed by differential scanning calorimetry (DSC). $T_g$ vs. ln (time) data at an arbitrary reference were superposed by time-temperature shifts for the kinetically controlled reaction, and the shift factors were used to calculate an Arrhenius activation energy. Influence of POSS was investigated from $T_g$ vs. ${\alpha}$ data, which in turn were fitted with DiBenedetto equation.

Solid Electrolyte Technologies for Next-Generation Lithium Secondary Batteries (차세대 리튬이차전지용 고체 전해질 기술)

  • Kim, K.M.;Oh, J.M.;Shin, D.O.;Kim, J.Y.;Lee, Y.G.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.76-86
    • /
    • 2021
  • Technologies for lithium secondary batteries are now increasingly expanding to simultaneously improve the safety and higher energy and power densities of large-scale battery systems, such as electric vehicles and smart-grid energy storage systems. Next-generation lithium batteries, such as lithium-sulfur (Li-S) and lithium-air (Li-O2) batteries by adopting solid electrolytes and lithium metal anode, can be a solution for the requirements. In this analysis of battery technology trends, solid electrolytes, including polymer (organic), inorganic (oxides and sulfides), and their hybrid (composite) are focused to describe the electrochemical performance achievable by adopting optimal components and discussing the interfacial behaviors that occurred by the contact of different ingredients for safe and high-energy lithium secondary battery systems. As next-generation rechargeable lithium batteries, Li-S and Li-O2 battery systems are briefly discussed coupling with the possible use of solid electrolytes. In addition, Electronics and Telecommunications Research Institutes achievements in the field of solid electrolytes for lithium rechargeable batteries are finally introduced.

Impact of Solution-Processed BCP Buffer Layer on Efficient Perovskite Solar Cells (페로브스카이트 태양전지에서의 저온 용액 공정의 BCP 버퍼층 효과)

  • Jung, Minsu;Choi, In Woo;Kim, Dong Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.73-77
    • /
    • 2021
  • Inorganic-organic hybrid perovskite solar cells have demonstrated considerable improvements, reaching 25.5% of certified power conversion efficiency in 2020 from 3.8% in 2009. In normal structured perovskite solar cells, TiO2 electron-transporting materials require heat treatment process at a high temperature over 450℃ to induce crystallinity. Inverted perovskite solar cells have also been studied to exclude the additional thermal process by using [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as a non-oxide electron-transporting layer. However, the drawback of the PCBM layer is a charge accumulation at the interface between PCBM and a metal electrode. The impact of bathocuproin (BCP) buffer layer on photovoltaic performance has been investigated herein to solve the problem of PCBM. 2-mM BCP-modified perovskite solar cells were observed to exhibit a maximum efficiency of 12.03% compared with BCP-free counterparts (5.82%) due to the suppression of the charge accumulation at the PCBM-Au interface and the resulting reduction of the charge recombination between perovskite and the PCBM layer.

A Brief Review on Strategies for Improving UV and Humidity Stability of Perovskite Solar Cells Towards Commercialization (페로브스카이트 태양전지 상용화를 위한 자외선 및 수분 안정성 향상 전략)

  • Hwang, Eunhye;Kwon, Tae-Hyuk
    • Current Photovoltaic Research
    • /
    • v.10 no.2
    • /
    • pp.49-55
    • /
    • 2022
  • With rapid growth in light-harvesting efficiency from 3.8 to 25.8%, organic-inorganic hybrid perovskite solar cells (PSCs) have attracted great attention as promising photovoltaic devices. However, despite of their outstanding performance, the commercialization of PSCs has been suffered from severe stability issues, especially for UV and humidity: (i) UV irradiation towards PSCs is able to lead UV-induced decomposition of perovskite films or catalytic reactions of charge-transporting layers, and (ii) exposure to surrounding humidity causes irreversible hydration of perovskite layers by the penetration of water molecules, resulting considerable decrease in their power-conversion efficiency (PCE). This review investigates current status of strategies to enhance UV and humidity stability of PSCs in terms of UV-management and moisture protection, respectively. Furthermore, the multifunctional approach to increase long-term stability as well as performance is discussed as advanced research directions for the commercialization of PSCs.

Study of Characteristic of Covalent Cross-linked SPEEK/Silane 4wt%/Cs-substituted MoPA/Ceria hybrid Membrane for Water Electrolysis (Ceria 첨가에 따른 수전해용 공유가교 CL-SPEEK/Silane 4wt%/Cs-MoPA/Ceria 복합막의 특성 연구)

  • Oh, Seunghee;Park, Daeyong;Hwang, Sungha;Yoon, Daejin;Oh, Yunsun;Moon, Sangbong;Chung, Janghoon
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.6
    • /
    • pp.561-569
    • /
    • 2014
  • Ceria ($CeO_2$) was used to increase the durability of the membrane in the polymer electrolyte membrane water electrolysis (PEMWE) circumstance. The sulfonated polyether ether ketone (SPEEK) as polymer matrix was prepared in the sulfonation reaction of polyether ether ketone (PEEK) to improve electrochemical characteristics. After sulfonation reaction, the organic-inorganic blended composite membranes were prepared by means of sol-gel casting method with loading the highly dispersed $CeO_2$ and Cs-substituted molybdophosphoric acid (Cs-MoPA) with cross-linking agent (tetrapropyl orthosilicate). Consequently, the composite membrane CL-SPEEK/Silane 4wt%/Cs-MoPA/Ceria(1%) showed the improved characteristics such as 82% of water content, 0.11136 S/cm of proton conductivity at $80^{\circ}C$, 55.50 MPa of tensile strength and 4.37% of breeding out of MoPA.

Preparation of Hard Coating Solutions with High Refractive Index for Polycarbonate Sheet by the Sol-Gel Method (Sol-Gel 법에 의한 Polycarbonate 시트에 적용 가능한 고굴절률을 보이는 하드코팅 용액의 제조)

  • Cheong, Il Yeop;Cho, Kyung In;Cheong, Sang Hyuk;Park, Hyo Nam;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.335-339
    • /
    • 2007
  • In order to overcome the problem of poor hardness of transparent polycarbonate (PC) sheets, organic-inorganic hybrid hard coating solutions, which show a high refractive index above 1.58, were made by the sol-gel method. These hybrid coating solutions were obtained from mixture of titanium tetraisopropoxide (TTIP), and (3-glycidoxypropyl)trimethoxysilane (GPTMS). The PC sheets were spin-coated, and cured at $120^{\circ}C$ for 2 hr. Change of refractive index in the range of 1.53-1.61 was obtained by varying the GPTMS content. The refractive index of the coated film decreased with increasing the GPTMS content, while the pencil hardness of the coated film was found to increase with increasing the GPTMS content.

Microscopical and chemical surface characterization of CAD/CAM zircona abutments after different cleaning procedures. A qualitative analysis

  • Gehrke, Peter;Tabellion, Astrid;Fischer, Carsten
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.151-159
    • /
    • 2015
  • PURPOSE. To describe and characterize the surface topography and cleanliness of CAD/CAM manufactured zirconia abutments after steaming and ultrasonic cleaning. MATERIALS AND METHODS. A total of 12 ceramic CAD/CAM implant abutments of various manufacturers were produced and randomly divided into two groups of six samples each (control and test group). Four two-piece hybrid abutments and two one-piece abutments made of zirconium-dioxide were assessed per each group. In the control group, cleaning by steam was performed. The test group underwent an ultrasonic cleaning procedure with acetone, ethyl alcohol and antibacterial solution. Groups were subjected to scanning electron microscope (SEM) analysis and Energy-dispersive X-ray spectroscopy (EDX) to verify and characterize contaminant chemical characterization non- quantitatively. RESULTS. All zirconia CAD/CAM abutments in the present study displayed production-induced wear particles, debris as well as organic and inorganic contaminants. The abutments of the test group showed reduction of surface contamination after undergoing an ultrasonic cleaning procedure. However, an absolute removal of pollutants could not be achieved. CONCLUSION. The presence of debris on the transmucosal surface of CAD/CAM zirconia abutments of various manufacturers was confirmed. Within the limits of the study design, the results suggest that a defined ultrasonic cleaning process can be advantageously employed to reduce such debris, thus, supposedly enhancing soft tissue healing. Although the adverse long-term influence of abutment contamination on the biological stability of peri-implant tissues has been evidenced, a standardized and validated polishing and cleaning protocol still has to be implemented.

Development of Environmental-friendly Nontoxic Flame Retardant Paint (친환경 무독성 난연도료 개발연구)

  • Do, Young-Woong;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1354-1358
    • /
    • 2008
  • Environmental-friendly nontocxic flame retardant paint which can overcomes the restriction of harmful materials for human body and environments such as Pb, Hg, Cd, $C^{+6}$, PBB/PBDE by EU and domestic Ministry of Environment was developed. Developed paint is the water-soluble organic inorganic hybrid material that VOC(volatility organic compound) discharge is low, and that human riskiness and environmental pollution is minimized not using the kinds of halogen materials. $Mg(OH)_2$, $Sb_{2}O_{3}$, and Zinc borate were used as flame retardant materials, 2% Micell and water were used as binder and solvent, respectively. Results showed the optimum activity was obtained when the ratio of those frame retardant agents($Mg(OH)_2$, $Sb_{2}O_{3}$, Zinc borate made by 1: 2: 2), binder(2% Micell) and water was 1: 0.5: 0.5.

Electrically Stable Transparent Complementary Inverter with Organic-inorganic Nano-hybrid Dielectrics

  • Oh, Min-Suk;Lee, Ki-Moon;Lee, Kwang-H.;Cha, Sung-Hoon;Lee, Byoung-H.;Sung, Myung-M.;Im, Seong-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.620-621
    • /
    • 2008
  • Transparent electronics has been one of the key terminologies forecasting the ubiquitous technology era. Several researchers have thus extensively developed transparent oxide-based thin-film transistors (TFTs) on glass and plastic substrates although in general high voltage operating devices have been mainly studied considering transparent display drivers. However, low voltage operating oxide TFTs with transparent electrodes are very necessary if we are aiming at logic circuit applications, for which transparent complementary or one-type channel inverters are required. The most effective and low power consuming inverter should be a form of complementary p-channel and n-channel transistors but real application of those complementary TFT inverters also requires electrical- and even photo-stabilities. Since p-type oxide TFTs have not been developed yet, we previously adopted organic pentacene TFTs for the p-channel while ZnO TFTs were chosen for n-channel on sputter-deposited $AlO_x$ film. As a result, decent inverting behavior was achieved but some electrical gate instability was unavoidable at the ZnO/$AlO_x$ channel interface. Here, considering such gate instability issues we have designed a unique transparent complementary TFT (CTFTs) inverter structure with top n-ZnO channel and bottom p-pentacene channel based on 12 nm-thin nano-oxide/self assembled monolayer laminated dielectric, which has a large dielectric strength comparable to that of thin film amorphous $Al_2O_3$. Our transparent CTFT inverter well operate under 3 V, demonstrating a maximum voltage gain of ~20, good electrical and even photoelectric stabilities. The device transmittance was over 60 % and this type of transparent inverter has never been reported, to the best of our limited knowledge.

  • PDF