• Title/Summary/Keyword: Organic-inorganic Hybrid

Search Result 369, Processing Time 0.04 seconds

High-Rate Blended Cathode with Mixed Morphology for All-Solid-State Li-ion Batteries

  • Heo, Kookjin;Im, Jehong;Lee, Jeong-Seon;Jo, Jeonggeon;Kim, Seokhun;Kim, Jaekook;Lim, Jinsub
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.282-290
    • /
    • 2020
  • In this article, we report the effect of blended cathode materials on the performance of all-solid-state lithium-ion batteries (ASLBs) with oxide-based organic/inorganic hybrid electrolytes. LiFePO4 material is good candidates as cathode material in PEO-based solid electrolytes because of their low operating potential of 3.4 V; however, LiFePO4 suffers from low electric conductivity and low Li ion diffusion rate across the LiFePO4/FePO4 interface. Particularly, monoclinic Li3V2(PO4)3 (LVP) is a well-known high-power-density cathode material due to its rapid ionic diffusion properties. Therefore, the structure, cycling stability, and rate performance of the blended LiFePO4/Li3V2(PO4)3 cathode material in ASLBs with oxidebased inorganic/organic-hybrid electrolytes are investigated by using powder X-ray diffraction analysis, field-emission scanning electron microscopy, Brunauer-Emmett-Teller sorption experiments, electrochemical impedance spectroscopy, and galvanostatic measurements.

Microwave-assisted synthesis of $Cu_2O$ and Cu from $Cu_2(OH)_3(CH_3COO){\cdot}H_2O$ ($Cu_2(OH)_3(CH_3COO){\cdot}H_2O$로 부터 마이크로파를 이용한 $Cu_2O$와 Cu의 합성)

  • Song, Ha-Chul;Huh, Young-Duk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.4
    • /
    • pp.166-171
    • /
    • 2006
  • [ $Cu_2O$ ] and Cu have been synthesized from the layered organic-inorganic hybrid, $Cu_2(OH)_3(CH_3COO){\cdot}H_2O$, assisted by microwave irradiation. $Cu_2O$ is formed in aqueous glucose solution, while metallic Cu is formed in ethylene glycol by reduction of $Cu_2(OH)_3(CH_3COO){\cdot}H_2O$. The influence of microwave irradiation time and concentration of glucose on $Cu_2O$ particles formation and growth has been examined. The morphologies of $Cu_2O$ particles change from spheres with a few fm size to nanowires with diameter of 40 nm as increasing the microwave irradiation times.

Flexibility Improvement of InGaZnO Thin Film Transistors Using Organic/inorganic Hybrid Gate Dielectrics

  • Hwang, B.U.;Kim, D.I.;Jeon, H.S.;Lee, H.J.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.341-341
    • /
    • 2012
  • Recently, oxide semi-conductor materials have been investigated as promising candidates replacing a-Si:H and poly-Si semiconductor because they have some advantages of a room-temperature process, low-cost, high performance and various applications in flexible and transparent electronics. Particularly, amorphous indium-gallium-zinc-oxide (a-IGZO) is an interesting semiconductor material for use in flexible thin film transistor (TFT) fabrication due to the high carrier mobility and low deposition temperatures. In this work, we demonstrated improvement of flexibility in IGZO TFTs, which were fabricated on polyimide (PI) substrate. At first, a thin poly-4vinyl phenol (PVP) layer was spin coated on PI substrate for making a smooth surface up to 0.3 nm, which was required to form high quality active layer. Then, Ni gate electrode of 100 nm was deposited on the bare PVP layer by e-beam evaporator using a shadow mask. The PVP and $Al_2O_3$ layers with different thicknesses were used for organic/inorganic multi gate dielectric, which were formed by spin coater and atomic layer deposition (ALD), respectively, at $200^{\circ}C$. 70 nm IGZO semiconductor layer and 70 nm Al source/drain electrodes were respectively deposited by RF magnetron sputter and thermal evaporator using shadow masks. Then, IGZO layer was annealed on a hotplate at $200^{\circ}C$ for 1 hour. Standard electrical characteristics of transistors were measured by a semiconductor parameter analyzer at room temperature in the dark and performance of devices then was also evaluated under static and dynamic mechanical deformation. The IGZO TFTs incorporating hybrid gate dielectrics showed a high flexibility compared to the device with single structural gate dielectrics. The effects of mechanical deformation on the TFT characteristics will be discussed in detail.

  • PDF

Improved Thermal Stability of PET Fabrics by Photografting of Methacryloxypropyltrimethoxysilane(MAPTMS) (Methacryloxypropyltrimethoxysilane(MAPTMS)의 광그라프트에 의한 PET직물의 열적 안정성 향상)

  • Jang, Jin-Ho;Son, Jung-A
    • Textile Coloration and Finishing
    • /
    • v.20 no.4
    • /
    • pp.1-7
    • /
    • 2008
  • Methacryloxypropyl trimethoxysilane (MAPTMS), a hybrid organic-inorganic monomer, was photografted onto PET fabric using benzophenone (BP) as a photoinitiator. It was found that a UV energy of 43.2J/$cm^2$ was required to optimally photograft the MAPTMS onto PET fabrics which was applied with an aqueous formulation of 10% MAPTMS, 20% BP and 0.5% N-Methyldiethanol amine (MDEA). The MDEA additive was efficient in reducing atmospheric oxygen inhibition of polymer radicals which eliminated compulsory nitrogen inerting. The surface grafting of PET fabrics was verified by fourier transform infrared spectroscopy (FT-IR) and scanning electron spectroscopy (SEM). The grafted PET fabrics with the hybrid monomer showed higher thermal stability due to the introduced silane component in the monomer as ascertained by higher char content at 800$^{\circ}C$, which increased to 14.5% for the 15.8% grafting compared to 8.2% for the untreated.

The Changes of Short Circuit Current Density according to the Post-annealing Temperature of Organic Materials in the Hybrid Photovoltaics (하이브리드 태양전지 제작에 있어서 유기물의 후열처리 온도에 따른 단락전류밀도의 변화)

  • Gwon, Dong-Oh;Shin, Min Jeong;Ahn, Hyung Soo;Yi, Sam Nyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.81-85
    • /
    • 2015
  • The organic/inorganic hybrid photovoltaic devices have been studied using Poly(3-hexylthiophene-2,5-diyl) (P3HT) : [6, 6]-Phenyl C61 butyric acid methyl ester (PCBM) and GaN. We traced the effect of short circuit current density with different annealing method under the various concentration and ratio of P3HT:PCBM. During the pre-annealing course, the heat treatments were performed each time at low temperature after the organic layer coated and the samples were heated at high temperature through one or two steps under the post-annealing process. It revealed that the samples with post-annealing process had higher values of short circuit current density than the other samples upon pre-annealing. And the interesting high short circuit current density features were observed at 1:1 mixing ratio and 1wt% of P3HT:PCBM.

Preparations and Interfacial Phenomena of Hybrid Composites (Hycom) Containing Wasted Stone Powders and Tire Chips (폐석분과 폐타이어 칩을 충진제로 한 혼성복합재(Hycom)의 제조 및 계면현상 연구)

  • Hwang, Teak-Sung;Cha, Ki-Sik
    • Journal of Adhesion and Interface
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • In this study, wasted stone powders (WSP) obtained from sludge and Wasted Tire Chips (WTC) as fillers have been used to formulate polymer hybrid composites based on Unsaturated Polyester (UPE) resin. To further enhance not only the interfacial bond between the inorganic filler and the polymer matrix, but also the filler dispersion by wetting the particulate surfaces to uniformly spread the resin during the mixing, silane coupling agent[${\gamma}$-methacryloxy propyl trimethoxy silane (${\gamma}$-MPS)] was used. The influences of organic recycled fillers contents and the concentrations of coupling agent in polymer hybrid composite formulations have been investigated from a mechanical and microstructural point o view through Mercury Porosimeter and SEM.

  • PDF

Study on the hydrophobic modification of zirconia surface for organic-inorganic hybrid coatings (유-무기 하이브리드 코팅액 제조를 위한 지르코니아 표면의 소수화 개질 연구)

  • Lee, Soo;Moon, Sung Jin;Park, Jung Ju
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.260-270
    • /
    • 2017
  • Zirconia has white color and physical, chemical stability, also using in high temperature materials and various industrial structural ceramics such as heat insulating materials and refractories due to their low thermal conductivity, excellent strength, toughness, and corrosion resistance. If hydrophobically modified zirconia is introduced into a hydrophobic acrylate coating solution, the hardness, chemical, electrical, and optical properties will be improved due to the better dispersibility of inorganic particle in organic coating media. Thus, we introduced $-CH_3$ group through silylation reaction using either trimethylchlorosilane(TMCS) or hexamethyldisilazane(HMDZ) on zirconia surface. The $Si-CH_3$ peaks derived from TMCS and HMDZ on hydrophobically modified zirconia surface was confirmed by FT-IR ATR spectroscopy, and introduction of silicon was confirmed by FE-SEM/EDS and ICP-AES. In addition, the sedimentation rate result in acrylate monomer of the modified zirconia showed the improved dispersibility. Comparison of the sizes of a pristine and the modified zirconia particles, which were clearly measured not by the normal microscope but by particle size analysis, provided a pulverizing was occurred by physical force during the silylation process. From the BET analysis data, the specific surface area of zirconia was approximately $18m^2/g$ and did not significantly change during modification process.

Study on Fabrication and Properties of organic and inorganic hybrid photovoltaic cells (유무기 하이브리드 태양전지의 제조와 특성에 관한 연구)

  • Ahn, Joon-Ho;Jin, Sung-Hwan;Hong, Soon-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.61-62
    • /
    • 2008
  • 최근 유가 상승의 영향으로 많은 연구자들의 관심이 풍부하고 무한한 태양에너지의 활용에 많은 관심이 쏟아지고 있다. 하지만 현재 상용화된 실리콘 태양전지는 실리콘의 정제 및 제조 단가가 생산 비용에 많은 부분을 차지하여 시장진입에 어려움을 겪고 있다 또한 실리콘의 생산과 가공이 반도체나 디스플레이 분야에서도 반드시 필요하기 때문에 그에 따른 생산량이 전체 소비를 따라 가지 못하여 나타나는 공급 부족 현상도 상당 기간 지속 되었다. 이러한 상황에서 실리콘을 대처할만한 태양전지의 개발과 함께 휴대성이 뛰어난 태양전지의 개발이 많은 관심을 끌고 있다. 본 연구에서는 기존의 유기 태양전지에 CNT를 혼합한 유무기 하이브리드 태양전지를 제조하고 그에 따른 광학적 특성과 전기적 특성을 살펴보았다.

  • PDF

A Study for Electrical Properties of Organic-Inorganic Hybrid TFT on Surface Treated Organic Gate Insulator by $O_2$ Plasma

  • Gong, Su-Cheol;Choe, Jin-Eun;Jeong, U-Ho;Choe, Yong-Jun;Jeon, Hyeong-Tak;Park, Hyeong-Ho;Ryu, Sang-Uk;Jang, Ho-Jeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.73-73
    • /
    • 2008
  • LCD, OLED 등의 평판디스플레이와 RFID tag, smart card 등의 구동 소자 등 넓은 산업 분야에 적용하기 위하여 PVP 유기물과 병합된 ZnO 산화물을 이용하여 차세대 박막트랜지스터의 제작 공정과 전기적 특성을 조사하였다. 또한 제작된 박막트랜지스터의 전기적 특성을 향상시키기 위하여 유, 무기 박막의 특성을 분석하고, $O_2$ plasma 처리를 통하여 유-무기 박막간 계면 접합력 및 계면 효과의 변화특성이 OITFT 특성에 미치는 영향을 조사하였다.

  • PDF

A study on the structure of Si-O-C thin films with films size pore by ICPCVD (ICPCVD방법에 의한 나노기공을 갖는 Si-O-C 박막의 형성에 관한 연구)

  • Oh, Teresa
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.477-480
    • /
    • 2002
  • Si-O-C(-H) thin film with a tow dielectric constant were deposited on a P-type Si(100) substrate by an inductively coupled plasma chemical vapor deposition (ICPCVD). Bis-trimethylsilymethane (BTMSM, H$_{9}$C$_3$-Si-CH$_2$-Si-C$_3$H$_{9}$) and oxygen gas were used as Precursor. Hybrid type Si-O-C(-H) thin films with organic material have been generated many voids after annealing. Consequently, the Si-O-C(-H) films can be made a low dielectric material by the effect of void. The surface characterization of Si-O-C(-H) thin films were performed by SEM(scanning electron microscope). The characteristic analysis of Si-O-C(-H) thin films were performed by X-ray photoelectron spectroscopy (XPS).

  • PDF