• Title/Summary/Keyword: Organic-inorganic Hybrid

Search Result 366, Processing Time 0.027 seconds

Effects of the Surfactant and the Quaternary Ammonium Functional Groups on the Removal of Perrhenate Anions using Mesoporous Anion-Exchange Resins in Aqueous Solutions (암모늄 기능기와 계면활성제가 포함된 메조포러스 음이온교환수지를 이용한 수용액중 퍼리네이트(Perrhenate) 음이온 제거)

  • Lee, Byunghwan;Chung, Yeon-Sung;Park, Chulhwan
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.436-442
    • /
    • 2008
  • Organic-inorganic hybrid mesoporous anion-exchange resins were prepared for the adsorption of anions from aqueous solutions. The prepared samples were characterized using nitrogen adsorption-desorption measurements, Fourier transform infrared (FTIR) spectroscopy, and elemental analyses. Batch and kinetic experiments were performed to examine the anion-exchange performances of the prepared samples. Among the prepared samples, the hybrid mesoporous anion-exchange resins functionalized with tributylammonium groups showed higher adsorption capacities for perrhenate ions than did the resin functionalized with trimethylammonium groups. The surfactant, hexadecylamine, which had hydrophobic alkyl chains, also showed affinity for hydrophobic perrhenate anions.

Preparation of UV-Curable Polyurethane Modified $Acrylate/SiO_2$ Hybrid Film Using Sol-Gel Process (졸-젤 공정을 이용한 광경화형 폴리우레탄 변형 아크릴레이트/실리카 하이브리드 필름의 제조)

  • Nam, Dae-Woo;Nam, Byeong-Uk;Cha, Bong-Jun;Kim, Baek-Jin
    • Polymer(Korea)
    • /
    • v.31 no.2
    • /
    • pp.111-116
    • /
    • 2007
  • Polyurethane modified acrylate $(PUA)/SiO_2$ hybrid films were prepared by ultraviolet curing and their surface properties were investigated by hardness and adhesion test. The films were examined by the manipulation of mole-ratio of organic to inorganic components. Under the silica content controlled, highly desirable films were achieved and scratch resistance and hardness property of film were also enhanced, which indicates that the crosslinked silica particles are homogeneously dispersed within PUA film.

Charge Carrier Photogeneration and Hole Transport Properties of Blends of a $\pi$-Conjugated Polymer and an Organic-Inorganic Hybrid Material

  • Han, Jung-Wook;An, Jong-Deok;Jana, R.N.;Jung, Kyung-Na;Do, Jung-Hwan;Pyo, Seung-Moon;Im, Chan
    • Macromolecular Research
    • /
    • v.17 no.11
    • /
    • pp.894-900
    • /
    • 2009
  • This study examined the charge carrier photogeneration and hole transport properties of blends of poly (9-vinylcarbazole) (PVK), $\pi$-conjugated polymer, with different weight proportions (0~29.4 wt%) of (PEA)$VOPO_4{\cdot}H_2O$ (PEA: phenethylammonium cation), a novel organic-inorganic hybrid material, using IR, UV-Vis, and energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), steady state photocurrent (SSPC) measurement, and atomic force microscopy (AFM). The SSPC measurements showed that the photocurrent of PVK was reduced by approximately three orders of magnitude by the incorporation of a small amount (~12.5 wt%) of (PEA) $VOPO_4{\cdot}H_2O$, suggesting that hole transport occurred through the PVK carbazole groups, whereas a reverse trend was observed at high proportions (>12.5 wt%) of (PEA)$VOPO_4{\cdot}H_2O$, suggesting that transport occurred via (PEA)$VOPO_4{\cdot}H_2O$ molecules. The transition to a trap-controlled hopping mechanism was explained by the difference in ionization potential and electron affinity of the two compounds as well as the formation of charge percolation threshold pathways.

Ordered Hybrid Nanomaterials from Self-Assembled Polymeric Building Blocks

  • Kim, Dong-Ha
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.309-309
    • /
    • 2006
  • Latest developments on hybrid nanostructured materials fabricated by applying self-assembly strategies on organic/inorganic nanotemplates are discussed. Within this frame, numerous functional nanomaterials including arrays of composite metal/semiconductor nanoparticles, planar waveguides and functional multilayer thin films are generated using self-assembled polymers as templates or building blocks. In particular, surface plasmon resonance based optical sensing is employed to investigate nanofabrication processes occurring in nanoscale dimention. We also suggest unprecedented pathways to hybrid supramolecular multilayer nanoarchitectures in 1D or 2D geometry via layer-by-layer self-assembly.

  • PDF

Characterization of Interface in Hybrid Composites (혼성복합재료의 계면 특성 분석)

  • Ha, Chang-Sik;Ahn, Ki Youl;Cho, Won-Jei
    • Journal of Adhesion and Interface
    • /
    • v.1 no.1
    • /
    • pp.47-55
    • /
    • 2000
  • In this article, the characterization of the interface of hybrid composites was discussed. Interfacial interaction in organic/inorganic hybrid composites, especially silica-containing hybrids can be characterized by fluorescence spectroscopy, small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and $^{29}Si$ NMR spectroscopy measurements.

  • PDF

A Study on the Hybrid Floor Adhesive System with Crack Resistance (균열대응성을 보유한 유·무기 복합 하이브리드 바닥 접착시스템 연구)

  • Ko, Hyo-Jin;Kim, Rae-Hwan;Kim, Yong-Ro
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.171-172
    • /
    • 2023
  • In order to reduce crack defects caused by the behavior of concrete during floor tile construction, this paper introduced a hybrid floor adhesion system that first constructs an organic adhesive with crack correspondence and attaches tiles with inorganic mortar.

  • PDF

Crystallization and Melting Behavior of Silica Nanoparticles and Poly(ethylene 2,6-naphthalate) Hybrid Nanocomposites

  • Kim Jun-Young;Kim Seong-Hun;Kang Seong-Wook;Chang Jin-Hae;Ahn Seon-Hoon
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.146-154
    • /
    • 2006
  • Organic and inorganic hybrid nanocomposites based on poly(ethylene 2,6-naphthalate) (PEN) and silica nanoparticles were prepared by a melt blending process. In particular, polymer nanocomposites consisting mostly of cheap conventional polyesters with very small quantities of inorganic nanoparticles are of great interest from an industrial perspective. The crystallization behavior of PEN/silica hybrid nanocomposites depended significantly on silica content and crystallization temperature. The activation energy of crystallization for PEN/silica hybrid nanocomposites was decreased by incorporating a small quantity of silica nanoparticles. Double melting behavior was observed in PEN/silica hybrid nanocomposites, and the equilibrium melting temperature decreased with increasing silica content. The fold surface free energy of PEN/silica hybrid nanocomposites decreased with increasing silica content. The work of chain folding (q) for PEN was estimated as $7.28{\times}10^{-20}J$ per molecular chain fold, while the q values for the PEN/silica 0.9 hybrid nanocomposite was $3.71{\times}10^{-20}J$, implying that the incorporation of silica nanoparticles lowers the work required to fold the polymer chains.

Impact of CuSCN Deposition Solvents on Highly Efficient Perovskite Solar Cells (고효율 페로브스카이트 태양전지에서의 무기 홀 전도체 CuSCN 용매 효과)

  • Jung, Minsu;Seok, Sang Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.118-122
    • /
    • 2020
  • Inorganic-organic hybrid perovskite solar cells have demonstrated a significant achievement by reaching a certified power conversion efficiency of 25.2% in 2019 as compared to that of 3.8% in 2009. However, organic hole conductors such as PTAA and spiro-OMeTAD are known to be expensive and unstable when they are exposed to operational conditions. In this study, the inorganic hole conductor CuSCN was used to overcome such concerns. The influence of dipropyl sulfide (DPS) and diethyl sulfide (DES) as CuSCN deposition solvents on the underlying perovskite active layer was investigated. DES solvent was observed to be advantageous in terms of CuSCN solubility and mild for the perovskite layer, thereby resulting in a power conversion efficiency of 16.9%.

Photo-induced Isomerization and Polymerization of (Z,Z)-Muconate Anion in the Gallery Space of [LiAl2(OH)6]+ Layers

  • Rhee, Seog-Woo;Jung, Duk-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.35-40
    • /
    • 2002
  • Photoreaction of guest organic anions in layered organic-inorganic hybrid materials was investigated. The layered hybrids were synthesized by an anion-exchange reaction of $[LiAl_2(OH)_6]Cl{\cdot}yH_2O$ layered double hydroxide with aqueous (Z,Z)- and (E,E)-muconates under inert atmospheric condition, to give new organicinorganic hybrids of $[LiAl_2(OH)_6]_2[(Z,Z)-C_6H_4O_4]{\cdot}zH_2O$ and $[LiAl_2(OH)_6]_2[(E,E)-C_6H_4O_4]{\cdot}H_2O$, respectively. The basal spacings calculated by XRPD of intercalates indicate that muconate anions have almost vertical arrangements against the host $[LiAl_2(OH)_6]^+$ lattices in the interlayer of organic-inorganic hybrid materials. When UV light was irradiated on the suspension of $[LiAl_2(OH)_6]_2[(Z,Z)-C_6H_4O_4]{\cdot}zH_2O$, the (Z,Z)-muconate anions of the gallery space of hybrids were polymerized in the aqueous media while it was isomerized into more stable (E,E)-muconate in the methanollic suspension in the presence of catalytic amount of molecular iodine. All the products were characterized using elemental analysis, TGA, XRPD, FT-IR, $^1H$ NMR and $^{13}C$ CP-MAS NMR.

Photostability Evaluation of a New Sunscreen Agent, Methoxycinnamidopropyl Polysilsesquioxane (신규 자외선차단제인 Methoxycinnamidopropyl Polysilsesquioxane의 광안정성 평가)

  • Jung, Taek-Kyu;Kim, Young-Back;Yoon, Kyung-Sup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.3
    • /
    • pp.227-236
    • /
    • 2011
  • The new sunscreen agent, methoxycinnamidopropyl polysilsesquioxane, is manufactured as polymeric particles with an organic/inorganic hybrid composition. We have already reported the manufacturing method, physical properties, and sunprotection effects of methoxycinnamidopropyl polysilsesquioxane. In this study, we evaluated the photochemical properties and photostabilities of methoxycinnamidopropyl polysilsesquioxane that has the same functional group as a typical organic sunscreen agent, ethylhexyl methoxycinnamate (EHMC). Using the correlation of UV absorbance and fluorescence, we studied photostabilizers to enhance the photostability of methoxycinnamidopropyl polysilsesquioxane. Finally, we confirmed that octocrylene, ethylhexyl methoxycrylene, and bis-ethylhexyloxyphenol methoxyphenyl triazine were good photostabilizers for methoxycinnamidopropyl polysilsesquioxane.