• Title/Summary/Keyword: Organic-inorganic

Search Result 2,053, Processing Time 0.03 seconds

Organic-Inorganic Hybrid Thin Film Fabrication as Encapsulation using TMA and Adipoyl Chloride

  • Kim, Se-Jun;Han, Gyu-Seok;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.395-395
    • /
    • 2012
  • We fabricate organic-inorganic hybrid thin film for the purpose of encapsulation by molecular layer deposition (MLD) using Trimethylaluminium (TMA) and Adipoyl Chloride (AC). Ellipsometry was employed to verify self limiting reaction of ALD. Linear relationship between number of cycle and thickness was obtained. We found that desirable organic thin film fabrication is possible by MLD surface reaction in nanoscale. Purging was carried out after dosing of each precursor to form monolayer in each sequence. We also confirmed roughness of the organic thin film by atomic force microscopy. We deposit TMA and AC at $70^{\circ}C$ and that 1.78A root mean square was obtained which indicates that uniform organic thin film was formed. We confirmed precursor's functional group by IR spectrum. We calculated WVTR of organic-inorganic hybrid super-lattice epitaxial layer using Ca test. WVTR indicates superlattice film can be possibly use as encapsulation in flexible devices.

  • PDF

Low Temperature Encapsulation-Layer Fabrication of Organic-Inorganic Hybrid Thin Film by Atomic Layer Deposition-Molecular Layer Deposition

  • Kim, Se-Jun;Kim, Hong-Beom;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.274-274
    • /
    • 2013
  • We fabricate encapsulation-layer of OLED panel from organic-inorganic hybrid thin film by atomic layer deposition (ALD) molecular layer deposition (MLD) using Al2O3 as ALD process and Adipoyl Chloride (AC) and 1,4-Butanediamine as MLD process. Ellipsometry was employed to verify self-limiting reaction of MLD. Linear relationship between number of cycle and thickness was obtained. By such investigation, we found that desirable organic thin film fabrication is possible by MLD surface reaction in monolayer scale. Purging was carried out after dosing of each precursor to eliminate physically adsorbed precursor with surface. We also confirmed roughness of the organic thin film by atomic force microscopy (AFM). We deposit AC and 1,4-Butanediamine at $70^{\circ}C$ and investigated surface roughness as a function of increasing thickness of organic thin film. We confirmed precursor's functional group by IR spectrum. We calculated WVTR of organic-inorganic hybrid super-lattice epitaxial layer using Ca test. WVTR indicates super-lattice film can be possibly use as encapsulation in flexible devices.

  • PDF

The Organic-Inorganic Hybrid Encapsulation Layer of Aluminium Oxide and F-Alucone for Organic Light Emitting Diodes

  • Gwon, Deok-Hyeon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.374-374
    • /
    • 2012
  • Nowadays, Active Matrix Organic Light-Emitting Diodes (AM-OLEDs) are the superior display device due to their vivid full color, perfect video capability, light weight, low driving power, and potential flexibility. One of the advantages of AM-OLED over Liquid Crystal Display (LCD) lies in its flexibility. The potential flexibility of AM-OLED is not fully explored due to its sensitivity to moisture and oxygen which are readily present in atmosphere, and there are no flexible encapsulation layers available to protect these. Therefore, we come up with a new concept of Inorganic-Organic hybrid thin film as the encapsulation layer. Our Inorganic layer is Al2O3 and Organic layer is F-Alucone. We deposited these layers in vacuum state using Atomic Layer Deposition (ALD) and Molecular Layer Deposition (MLD) techniques. We found the results are comparable to commercial requirement of 10-6 g/m2 day for Water Vapor Transmission Rate (WVTR). Using ALD and MLD, we can control the exact thin film thickness and fabricate more dense films than chemical or physical vapor deposition methods. Moreover, this hybrid encapsulation layer potentially has both the flexibility of organic layers and superior protection properties of inorganic layer.

  • PDF

Electrodialysis of metal plating wastewater with neutralization pretreatment: Separation efficiency and organic removal

  • Park, Yong-Min;Choi, Su-Young;Park, Ki-Young;Kweon, Jihyang
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.179-187
    • /
    • 2020
  • Electrodialysis has been applied for treatment of industrial wastewater including metal electroplating. The wastewater from metal plating industries contains high concentrations of inorganics such as copper, nickel, and sodium. The ions in the feed were separated due to the electrical forces in the electrodialysis. The concentrate compartment is exposed to the elevated concentrations of the ions and yielded inorganic precipitations on the cation exchange membranes. The presence of organic matter in the metal plating wastewater affects complex interfacial reactions, which determines characteristics of inorganic scale fouling. The wastewater from a metal plating industry in practice was collected and the inorganic and organic compositions of the wastewater were analyzed. The performance of electrodialysis of the raw wastewater was evaluated and the effects of adjusting pH of the raw water were also measured. The integrated processes with neutralization and electrodialysis showed great removal of heavy metals sufficient to discharge to aquatic ecosystem. The organic matter in the raw water was also reduced by the neutralization, which might enhance removal performance and alleviate organic fouling in the integrated system.

A Study on the Degradation of Isopropyl Alcohol with $TiO_2-Coated$ Plastic Optic Fibers (광촉매 코팅 광섬유의 IPA 분해 특성 연구)

  • Yu Dong-Sik;Joo Hyun-Ku;Ha Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.4
    • /
    • pp.337-341
    • /
    • 2005
  • The degradation of IPA according to coating conditions was examined by $TiO_2/P-25-coated$ POF. In the photoactivity of $TiO_2-coated$ POF, ethanol solvent was higher activity than other solvents. Inorganic(KR-400), organic(A-9540) and inorganic$\cdot$organic hybrid(GPTMS, TMOS) resins were used as binder. Organic binder(A-9540) showed the highest activity for degradation of IPA, but organic binder was decomposed by $TiO_2$. Inorganic binder had lower binder ability than others, and lower adhesive than organic binders. In TMOS as inorganic · organic hybrid binder, activity of IPA degradation was decreased by addition of TMOS when the ratio of TMOS and P-25 was changed from 0.05 to 1.

  • PDF

A Study on the Organic-Inorganic Multilayer Barrier Thin Films Using R2R Low-Temperature Atmospheric-Pressure Atomic Layer Deposition System (연속공정기반 저온 상압 원자층 증착 시스템을 이용한 유무기 멀티레이어 배리어 박막에 관한 연구)

  • Lee, Jae-Wook;Kim, Hyun-Bum;Choi, Kyung-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.51-58
    • /
    • 2018
  • In this paper, the organic material Poly(methyl methacrylate) PMMA is used with inorganic $Al_2O_3$ to fabricate organic-inorganic multilayer barrier thin films. The organic thin films are developed using a roll-to-roll electrohydrodynamic atomization system, whereas the inorganic are grown using a roll-to-roll low-temperature atmospheric pressure atomic layer deposition system. For the first time, these two technologies are used together to develop organic-inorganic multilayer barrier thin films in atmospheric condition. The films are grown under optimized parameters and classified into three classes based on the layer structures, when the total thickness of the barrier is maintained at ~ 160 nm. All classes of barriers show good morphological, optical and chemical properties. The $Al_2O_3$ films with a low average arithmetic roughness of 1.58 nm conceal the non-uniformity and irregularities in PMMA thin films with a roughness of 5.20 nm. All classes of barriers show a notably good optical transmission of ~ 85 %. The hybrid organic-inorganic barriers show water vapor and oxygen permeation in the range of ${\sim}3.2{\times}10^{-2}g/m^2/day$ and $0.015cc/m^2/day$ at $23^{\circ}C$ and 100% relative humidity. It has been confirmed that it can be mass-produced and used as a low-cost barrier thin film in various printing electronic devices.

Synthesis and Etch Characteristics of Organic-Inorganic Hybrid Hard-Mask Materials (유-무기 하이브리드 하드마스크 소재의 합성 및 식각 특성에 관한 연구)

  • Yu, Je-Jeong;Hwang, Seok-Ho;Kim, Sang-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1993-1998
    • /
    • 2011
  • Semiconductor industry needs to have fine patterns in order to fabricate the high density integrated circuit. For nano-scale patterns, hard-mask is used to multi-layer structure which is formed by CVD (chemical vaporized deposition) process. In this work, we prepared single-layer hard-mask by using organic-inorganic hybrid polymer for spin-on process. The inorganic part of hard-mask was much easier etching than photo resist layer. Beside, the organic part of hard-mask was much harder etching than substrate layer. We characterized the optical and morphological properties to the hard mask films using organic-inorganic hybrid polymer, and then etch rate of photo resist layer and hard-mask film were compared. The hybrid polymer prepared from organic and inorganic materials was found to be useful hard-mask film to form the nano-patterns.

Characteristic of Insulation with Moisture Content Light-weight Inorganic Foam Ceramic Board (경량무기발포 세라믹보드 및 무기단열재의 함수율에 따른 단열특성)

  • Shin, Hyeon-Uk;Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.198-199
    • /
    • 2013
  • To prevent energy waste in buildings used heat insulator. Heat insulator materials can be classified inorganic and organic. The inorganic material has lower water resistance. The inorganic material is heavy and worse thermal performance than organic materials. Technologies on energy saving and materials used in curtain walls have progressed with increase of high-rise and large buildings. However, there is little study to explain water resistance performance of the curtain walls. This study focused on evaluation of insulation of inorganic materials and performance evaluation by thermal conductivity.

  • PDF

Investigation of Al-hydroxide Precipitate Fouling on the Nanofiltration Membrane System with Coagulation Pretreatment: Effect of Inorganic Compound, Organic Compound, and Their Combination

  • Choi, Yang-Hun;Kweon, Ji-Hyang
    • Environmental Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.149-157
    • /
    • 2011
  • Nanofiltration (NF) experiments were conducted to investigate fouling of Al-hydroxide precipitate and the influence of organic compound, inorganic compound, and their combination, i.e., multiple foulants. $CaCl_2$ and $MgSO_4$ were employed as surrogates of inorganic compounds while humic acid was used as surrogate of organic compound. The flux attained from NF experiments was fitted with the mathematical fouling model to evaluate the potential fouling mechanisms. Al-hydroxide fouling with a cake formation mechanism had little effect on the NF membrane fouling regardless of the Al concentration. The NF fouling by Al-hydroxide precipitate was deteriorated in presence of inorganic matter. The effect of Mg was more critical in increasing the fouling than Ca. This is because the Mg ions enhanced the resistances of the cake layer accumulated by the Al-hydroxide precipitate on the membrane surfaces. However, the fouling with Mg was dramatically mitigated by adding humic acid. It is interesting to observe that the removal of the conductivity was enhanced to 61.2% in presence of Mg and humic acid from 30.9% with Al-hydroxide alone. The influence of dissolved matter (i.e., colloids) was more negative than particulate matter on the NF fouling for Al-hydroxide precipitate in presence of inorganic and organic matter.

Inorganic Compound and Cycloserine Composite Particles for Improved Stability (안정성 개선을 위한 무기화합물과 사이클로세린 복합 입자)

  • Dongwon Kim;Heeseo Kim;Hongjun Yoon;Hyuk Jun Cho;Sung Giu Jin
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.126-131
    • /
    • 2024
  • The aim of this study was to improve the chemical stability of cycloserine containing organic and inorganic compounds. Composite particles were manufactured with a 1:1 weight ratio of organic/inorganic compounds and cycloserine. The influence of organic/inorganic compounds on the stability of cycloserine was investigated under accelerated stress conditions at 60℃/75% RH for 24 hours. In addition, the properties of the composite particles were evaluated using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and the dissolution of the drug was assessed by preparing it as a hard capsule. Among the organic and inorganic compounds investigated, calcium hydroxide most improved the stability of cycloserine under accelerated stress conditions (53.3 ± 2.2% vs 1.7 ± 0.2%). DSC results confirmed the compatibility between calcium hydroxide and the cycloserine, and SEM results confirmed that it was evenly distributed around the cycloserine. Calcium hydroxide also showed more than 90% cycloserine dissolution within 15 minutes. Therefore, the calcium hydroxide and cycloserine composite particles may be candidates for cycloserine oral pharmaceuticals with enhanced drug stability.