• Title/Summary/Keyword: Organic soils

Search Result 1,203, Processing Time 0.034 seconds

Adsorption, Movement and Decomposition of New Herbicide Bensulfuron-methyl in Soils (신규(新規) 제초제(除草劑) Bensulfuron-methyl 토양중(土壤中) 흡착(吸着), 이동(移動) 및 분해성(分解性))

  • Jang, I.S.;Moon, Y.H.;Ryang, H.S.
    • Korean Journal of Weed Science
    • /
    • v.7 no.2
    • /
    • pp.165-170
    • /
    • 1987
  • This study was undertaken to elucidate the behavior of herbicide bensulfuron-methyl[methyl-2-[[[[[(4,6-dimethoxy pyrimidine-2yl)amino]carbonyl]amino]sulfonyl]methyl]benzoate]in soils. Adsorption of the herbicide in soils was mainly correlated with content of organic matter and clay, and canon exchange capacity. Adsorption distribution coefficient(Kd value) in clay loam soil was greater than those in loam and sandy loam soils. The Kd value decreased in the order of zeolite, bentonite, halloysite and laziolite clay minerals. Bensulfuron-methyl moved to 3cm deep in clay loam soil and 4cm deep in sandy loam and herbicide treated layer was 0 to 2cm profile in the two soils. The decomposition rate of bensulfuron methyl varied with the soil properties. The rate was slower in sterilized soil than in nonsterilized. Addition of organic matters to the soils accelerated the decomposotion. The degradation was more rapid in 30$^{\circ}C$ soil temperature than in 20$^{\circ}C$.

  • PDF

Accumulation, Mobility, and Availability of Copper and Zinc in Plastic Film House Soils Using Speciation Analysis (종 분석을 이용한 시설재배지 토양 구리와 아연의 집적, 이동성 및 유효성 평가)

  • Kim, Rog-Young;Sung, Jwa-Kyung;Lee, Ju-Young;Lee, Ye-Jin;Jung, Sug-Jae;Lee, Jong-Sik;Jang, Byoung-Choon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.937-944
    • /
    • 2010
  • Cu and Zn can be accumulated in plastic film house soils by long-term application of livestock manure or compost. The mobility and bioavailability of Cu and Zn accumulated in soils are strongly influenced by their chemical or geochemical species in soils. In order to assess the accumulation, mobility, and bioavailability of Cu and Zn in plastic film house soils, we determined their geochemical species using a sequential extraction, grouped into three pods: the total pool, the potentially mobil pool, and the mobil pool. Total contents of Cu and Zn, ranged from 14.9 to 53.1 mg $kg^{-1}$ for Cu and from 55.4 to 169 mg $kg^{-1}$ for Zn, lied by far below the soil contamination standards, but exhibited little accumulation compared with their geogenic concentrations. Mobile contents of Cu and Zn and their percentage of total contents were strongly affected by soil pH in addition to total contents and soil organic matter. Mobile contents of Cu, ranged from <0.01 to 1.71 mg $kg^{-1}$, showed their minimum between pH 5.0 and 6.0 and increased above pH 6.0 to 8.0. In contrast, mobile contents of Zn, varied from <0.01 to 12.4 mg $kg^{-1}$, showed their minimum above pH 7.0 and increased strongly with decreasing pH below 5.5~6.0. Potentially mobile and total contents of Cu and Zn rose with ascending soil organic matter. To assess ecological and toxic effects of Cu and Zn in soils, mobile and potentially mobile contents, as bioavailable and potentially bioavailable pools, should be considered more important than total contents.

Developing a Numerical Model for Simulating In-Situ Biodegradation of an Organic Contaminant, TCE, in Biobarrier (생물벽체내 유기오염물질 TCE의 생물학적 분해 모의를 위한 수치모델개발)

  • 왕수균;오재일;배범한
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.4
    • /
    • pp.12-20
    • /
    • 2003
  • This study presents a mathematical model for simulating the fate and transport of a reactive organic contaminant, TCE, degraded by cometabolism in dual-porosity soils during the installation of in situ biobarrier. To investigate the effect of dual-porosity on transport and biodegradation of organic hydrocarbons, a bimodal approach was incorporated into the model. Modified Monod kinetics and a microcolony concept were employed to represent the effects of biodegrading microbes on the transport and biodegradation of an organic contaminant. The effect of permeability reduction in biobarrier due to biomass accumulation on the flow field were examined in the simulation of a hypothetical field-scale in situ bioaugmentation. Simulation results indicate that the presence of the immobile region can decrease the bioavailability of biodegradable contaminants and that the placement of microbes and nutrients injection wells should be considered for an effective installation of biobarrier during in situ bioaugmentation scheme.

Biological improvement of reclaimed tidal land soil (III) (해안간척지 토양의 생물학적 토성 개량에 관한 연구 3)

  • 홍순우;하영칠;최영길
    • Korean Journal of Microbiology
    • /
    • v.7 no.1
    • /
    • pp.29-40
    • /
    • 1969
  • Two kinds of organic materials, powders of Salicornia and Oryza sativa L. wre added as a source of organic matter to the suspensions of saline soils(soil : water = 1:3) to be 4 per cent of dried saline soil grams. And then, the samples were incubated at $28^{\circ}C$ to improve the decomposition of organic materials by soil microflora. Resutls of this experiment are summarized as followings : 1) The pH of soil suspension showed its highest value on the second or third week after the treatments, which were similar to those of the soil microflora. Results of this experiment are summarized as follwings : 1) The pH of soil suspension showed its highest value on the second ot third week after the treatments, which were similar to those of the soil microflora populations. 2) Salinity increased up to the second week and the highest value of it appeared in the samples which were treated with the powder of Salicornia. In general, the salinity of all samples decreased on the third week after the treatment. The fact was assumed the possibilities of desalination from saline soil by the microbial actions. 3) Soil microflora such as bacteria, actinomycetes and fungi, were determined its populations soil microflora is to act as decomposer in soil. Both of the bacteria and actinomycytes population showed in the third weak after the tratment. In general, 30-years old of saline soil contained microbial population much more than those of 5-year old of saline soil. Salicornia powder favored the increase of both the bacteria and fungal population, and Oryza sativa L. seemed to have been a great role in increase of actinomycetes. Especially, fungal population of the untreated soil suspension contained higher microbial populations more than those of the soils treated with both of the organic materials. 4) Sugar contents of soil suspesions decreased remarkably on the first week after the treatments. 5) The amount of nitrate had similar tendency to those of population changes of soil microflora. Total acidity decreased continuously and the amount of potassium showed its highest value on the third week treatment. However, the amount of phosphorus was determined to be insignificant.

  • PDF

Analysis of Organic Matter and Nutrient Leaching Characteristics of Agricultural Land Soils in Reservoir Area (저수구역 경작지 토양의 유기물 및 영양염류 용출특성 분석)

  • Yu, Nayeong;Shin, Minhwan;Lim, Jungha;Kum, Donghyuk;Nam, Changdong;Lim, Kyoungjae;Kim, Jonggun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.1
    • /
    • pp.89-102
    • /
    • 2021
  • Soils in agricultural lands contain large amount of organic matter and nutrients due to the injected fertilizers and manure. During heavy rain, surface water and base runoff pollutants flows into a nearby stream or lake with eroded soil from agricultural lands. On the other hands, agricultural lands near the lake are inundated due to the increase of the water level in the lake, leading to organic matter and nutrient release from the inundated soil. In this study, releasing rates of nutrient salts and organic substances were analyzed for the soil in the agricultural land, where cultivation activities has been carried out and periodically flooded, to account for the possibility of contamination from the inundated agricultural land in reservoir areas The experiment results have shown that COD was released from the soil in anaerobic conditions, and T-P was released in both anaerobic and aerobic conditions. However, in the case of T-N, it was found that the runoff by soil was not made before the rainfall occurred, and when the soil was impound due to rainfall, the elution occurred under the aerobic conditions. Through the results of this study, it was possible to account for the effect of flooded agricultural lands on the water quality in the lake, and this could be reflected in an efficient agricultural non-point pollution management policy. In order to determine the precise releasing rate for each agricultural land, it is believed that the leaching experiment for paddy fields and grasslands are needed.

Studies on the Organic Tiers Contained paddy Soils in Honam Area -II. Studies on the physicochemical characteristics of Organic Tiers and bearing power of soils (유기질토층(有機質土層)을 함유(含有)한 호남지역(湖南地域) 답토양(畓土壤)에 관(關)한 연구(硏究) -II. 유기질토층(有機質土層)의 이화학적(理化學的) 특성(特性) 및 토양(土壤)의 지지력(支持力))

  • Yoo, Chul-Hyun;Cho, Guk-Hyun;Choi, Jeong-Weon;Kim, Han-Myoung;Park, Keon-Ho;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.3
    • /
    • pp.187-194
    • /
    • 1986
  • Present stadies were carried out to obtain fundermental data for effective management of the soils by investigating the physicochemical characteristics rubber fiber, humification grade and bearing power of peats and muck which were included in Geongdeog series, and Gimje series in Honam area. The results abtained were as follows; 1. Humification grade of peats were about 23, while that of muck soils was about 45-71 and those were higher in Gimje series than Bongnam series. 2. The organic tiers which humification grade was higher were high pH, bulk density, and contents of K, $P_2O_5$, B.S and while were low OM, T-C, T-N, Na, $SiO_2$ and rubbed fiber. 3. In peats and mucks, bulk density, pH, contents of T-N $P_2O_5$ and ash were negatively correlated with rubbed fiber and OM, CEC, T-C, PAC, C/N, C/P were positively correlated with one, while these physicochemical characteristics were oppositely correlated with humification grade. 4. Cone bearing power of each soil tiers was low in every Geongdeog series which had the thick organic tiers and showed poorly drainage and it was the highest in Gimje series which was similar to in organic soils because of its thin organic tiers.

  • PDF

Organic Rice (Oryza sativa L.) Production in Eco-friendly Complex using Gelatin·Chitin Microorganisms (친환경 광역단지 내 젤라틴·키틴분해미생물을 이용한 유기 벼 생산)

  • Choi, Seung-Hee;Cha, Kwang-Hong;Seo, Dong-Jun;Park, Hung-Gyu;Kwon, Oh-Do;An, Kyu-Nam;Lee, Jai-Hak;Kim, Kil-Yong;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.4
    • /
    • pp.629-647
    • /
    • 2018
  • This study was carried out to investigate the economic value of organic rice production using gelatin chitin microorganisms in eco-friendly complex, Gongsan, Naju city. The soil condition of experiment paddy field was Jeonbuk series and silt loam with a slightly poor drainage. Except for the high effective silicate, the chemical characteristics of soils used were included in the optimum range of paddy soils in Korea. In growth, plant length, tiller number, ear number, and ear length were observed to be higher in conventional paddy fields than organic paddy fields. However, number of grain per panicle and grain filling ratio (%) were higher in organic paddy fields than conventional paddy fields. Incidences of diseases and insect pests were slightly higher in the organic paddy fields. Water weevil, sheath blight, rice leaf roller and rice blast were more occurred in organic paddy field. On the other hand, false smut was higher occurred in conventional paddy field. There was a significant negative correlation between rice sheath blight and rice leaf roller, and rice yield. In the milled rice quality, the quality of organically cultivated milled rices was lower by the increase of broken rice than that of conventionally cultivated milled rices. The quality and palatability of rice were higher in organic cultivation with decreasing of protein content. Net income of conventionally and organically cultivated rice was 360,000 won/10a and 610,000 won/10a, respectively. Premium net income of the organically cultivated rice was 68%.

The Interference of Organic Matter in the Characterization of Aquifers Contaminated with LNAPLs by Partitioning Tracer Method (LNAPLs 오염 지반에 분배성 추적자 시험법 적용 시 유기물질의 영향에 관한 연구)

  • Khan, Sherin Momand;Rhee, Sung-Su;Park, Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.9
    • /
    • pp.13-21
    • /
    • 2008
  • Partitioning tracer method is a useful tool to characterize large domains of the aquifers contaminated with light nonaqueous phase liquids (LNAPLs). Sorption of the partitioning tracers to the organic matter content of soil can potentially influence the efficacy of partitioning tracer method. LNAPL-water partitioning coefficients of tracers ($K_{nw}$), measured by static method, showed linear relationship. Sorption isotherm tests were conducted to evaluate the sorption capacity of the soils packed in the columns and the results were appropriately represented by Freundlich sorption isotherm. The sorption of tracers proportionally increased with the increase of the organic matter content of the soil. Laboratory experiments were conducted in four columns each packed with soils of different organic matter contents to determine the potential interference effects of sorption to soil organic matter content and correction factors for the errors in estimation of LNAPLs by partitioning tracer method. Though there were no contaminants added, breakthrough curves from columns packed with mixture of Jumunjin standard sand and organic matter showed separation of tracers. Columns were then contaminated to residual saturation with kerosene and breakthrough curves were obtained. The results show that sorption of tracers to soil organic matter leads to an increase in the retardation factor (R) and hence, to an overestimation of the saturation of LNAPLs. A relation between the percentage of organic matter content and the corresponding percentage error in the estimation of NAPLs has been developed.

Changes of Physical Properties of Soils by Organic Material application (유기성 물질 시용에 따른 농경지 토양물리성 변화 연구)

  • Kim, Lee-Yul;Cho, Hyun-Jun;Han, Kyung-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.5
    • /
    • pp.304-314
    • /
    • 2004
  • The objective of this study was to investigate the effect of organic materials (compost, straw, green manure, pig manure, seed production oil cake, and industrial by products including municipal sewage sludge, industrial sewage sludge, leather processing sludge, and alcohol fermentation processing sludge) on physical properties of soils in seven paddy and four upland fields with differential soil textures, sandy loam, loam, or clay loam, etc. The investigated physical parameters were bulk density (BD), air permeability (AP), macroporosity, hardness, shear resistance, frictional resistance, water stability aggregate (WSA), and Middleton's dispersion ratio. Except for coarse sandy loam field with weak structure, a decrease in BD and shear resistance, and an increase in macroporosity and AP in plots with applying organic materials compared to plots without applying organic materials appeared. In upland fields, the positive effect of organic materials on WSA, BD, and air permeability was higher than in paddy fields. The combined plot of NPK and compost had lower BD, hardness, and shear resistance, and higher macroporosity and WSA than plot with compost. Green manure had higher positive effect on physical properties of soils compared to other organic materials and the extent of positive effect had no significant correlation with soil organic matter content. Of industrial byproducts applied in coarse sandy loam soil under upland condition, municipal sewage sludge and pig manure compost had higher effect on increase of WSA than leather processing sludge and alcohol fermentation processing sludge. Unlike WSA, there were no significant differences between industrial byproduct types in other physical properties. in silty clay loam soil under the upland condition, straw had more positive effect on soil physical parameters than hairy vetch and pig manure. Therefore, different organic materials had differently active effect on physical parameters depending on types of soil and land use. Especially, it could be thought that well-decomposed organic materials have the advantage of an increase in organic matter content, while coarse organic materials of an increase in WSA.

Soil Physical Properties and Organic Matter (토양(土壤)의 물리성(物理性)과 유기물(有機物))

  • Im, Jeong-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.3
    • /
    • pp.145-160
    • /
    • 1979
  • The effects of organic material application on soil physical properties were reviewed in relation to soil productivity. The organic matter contents and soil physical properties of the cultivated land in Korea were summarized and the effects of organic matter were compared in terms of land uses and soil types. Soil physical properties related to crop yield potential, such as soil aggregation, permeability, water holding capacity, erodibility, and compactibility, were used in evaluating the effects of organic materials as a soil physical amendment. The benefical effects of organic matter addition on soil physical conditions include (1) better aeration and increased infiltration in silty and clayey soils, (2) increased water holding capacity and moisture availability in sandy soils, (3) decreased soil erodibility, and (4) increased resistance to compaction. It is, therefore, concluded that continuous application of organic materials could greatly improve the various soil physical properties and favor the growth and yield of crops. A high rate of organic matter addition could contribute to reducing not only the soil erosion on sloping land, but also the possible detrimental effect of farm mechanization. In general, the effects of organic matter on soil physical improvement were estimated to be much higher in upland than in paddy. Organic matter would have a more pronounced effect on low productive lands such as heavy clayey or sandy soils and newly reclaimed soil. The optimum level of soil organic matter content was estimated to be about 3.0 to 3.5% for the best soil physical condition. Since the organic matter contents of the cultivated lands in Korea are much lower than optimum level, it would be desiable to use more organic materials to soil for the increase of soil productivity, continuation of stabilized high productivity and soil erosion control.

  • PDF