• 제목/요약/키워드: Organic phosphor

검색결과 43건 처리시간 0.029초

Synthesis and characterization of ZnS:Mn,Cl phosphor by combustion method

  • Park, Jo-Yong;Han, Sang-Do;Myung, Kwang-Shik;Kim, Byung-Guen;Yang, Hua;O, Byung-Seung
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.980-983
    • /
    • 2003
  • The preparation of ZnS:Mn,Cl phosphor has been carried out by combustion method. Manganese nitrate was decomposed with an organic fuel at $500^{\circ}C$ to give fine sized crystallites in presence of alkali metal halides at a lower temperature than the conventional synthesis. The phosphors thus obtained were then heated at 900 to $1200^{\circ}C$ in an inert atmosphere, for 3hours to get better luminescent properties. The phosphors were prepared at different temperatures and at different doping concentrations of manganese to determine the optimal conditions for synthesizing the phosphors with superior optical properties. Scanning electron microscopy (SEM) investigations have been carried out to observe the particle morphology and the grain size. Powder X-ray diffraction(XRD) was also performed to characterize the phosphors.

  • PDF

ZnS:Cu,Cl 형광체를 사용한 powder형 AC Electroluminescence의 전기적 광학적 특성 (Electrical and Optical Characteristics of AC P-ELD using ZnS:Cu,Cl)

  • 임민수;권순석;신유섭;윤성현;정득영;임기조;류부형
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.271-274
    • /
    • 1999
  • In this paper, we studied the matrix type Powder AC Electroluminescence using ZnS:Cu,Cl Phosphor. Previously, Powder AC EL was used in Backlighting of LCD. Rescently, organic Thin Film EL was rapidly developed because of high Luminescence and low applied voltage. But Powder AC EL has Superior features that include sheet like flexibility thickness, low weight, self-emission, a wide viewing angle and a fast response time. We tried to change of phosphor thickness and binder mixture rate in order to obtain the good condition of powder AC EL and we obtained the very low breakdown voltage that was just 15V. Till now, we measured the current-voltage(V-I), luminance-voltage(V-L), Luminance-current (L-I), color coordinate (CIE), and phosphor Intensity of variable thickness. In experiment result, the devices has the luminance of 840 cd/$m^2$ and improved color coordinate, x=0.1557, y=0.2145, using a 10kHz drive frequency.

  • PDF

열처리조건과 기판이 $ZnGa_O_4:Mn$ 박막 형광체의 발광특성에 미치는 영향 (Effects of heat treatment and substrates on luminescent characteristics of $ZnGa_O_4:Mn$ thin film phosphor)

  • 정승묵;김영진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 디스플레이 광소자분야
    • /
    • pp.181-184
    • /
    • 2004
  • The green emitting phosphor, $ZnGa_2O_4:Mn$ thin film with spinel structure were deposited by rf magnetron sputtering. Thin film phosphors were heat-treated in nitrogen, vacuum and air atmosphere, respectively. The effects of the substrates, heat-treatment conditions and the sputtering parameters were investigated. The growing behavior and luminescent properties of thin films depend on the crystallinity of the substrates. The Ga/Zn atomic ratios and luminescent characteristics were dependent on the annealing conditions.

  • PDF

Electrical Characteristics of Green Emitting Phosphor $Ir(PPY)_3$ Doped OLEDs

  • Kim, Jun-Ho;Kim, Yun-Myung;Ha, Yun-Kyung;Kim, Young-Kwan;Kim, Jung-Soo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제11C권3호
    • /
    • pp.53-57
    • /
    • 2001
  • The organic light-emitting devices (OLEDs) based on fluorescence have low efficiency due to the requirement of spin-symmetry conservation. By using the phosphorescent material, internal quantum efficiency can reach 100%, compared with 25% in the case of the fluorescent material. Thus, phosphorescent OLEDs have recently been extensively studied and shown higher internal quantum efficiency than the conventional OLEDs. In this study, we investigated the characteristics of the phosphorescent OLEDs with the green emitting phosphor, $Ir(ppy)_3$ (tris(2-phenylpyridine)iridium). The device with a structure of ITO/TPD$Ir(ppy)_3$ doped in BCP/BCP/$Alq_3$/Li:Al/Al was fabricated, and its electrical and optical characteristics were studied. By changing the doping concentration of $Ir(ppy)_3$, we fabricated several devices and investigated their characteristics.

  • PDF

Synthesis of ZnS:Cu,Cl phosphor by combustion method

  • Han, Sang-Do;Kim, Byeong-Kwon;Park, Jo-Yong;Khatkar, S.P.;Taxak, V.B.;Singh, Ishwar
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.759-761
    • /
    • 2002
  • A new method for the preparation of copper activated zinc sulfide phosphors by combustion method has been proposed. Copper nitrate was decomposed with an organic fuel to give fine sized particles in presence of alkali metal halides at low temperature than the conventional synthesis. Organic compound also acted as fuel at 500 $^{\circ}C$ with rapid heating. The phosphors thus obtained were then heated at 900 $^{\circ}C$ in an inert atmosphere for 2-5 hrs to get better luminescent properties.

  • PDF

MOD법에 의해 합성한 Willemite($Zn_2SiO_4$:Mn) 형광체의 발광 특성 (Photoluminescence of willemite ($Zn_2SiO_4$ : Mn) phosphors prepared by the MOD process)

  • 이병우;이선길;조현
    • 한국결정성장학회지
    • /
    • 제17권2호
    • /
    • pp.57-62
    • /
    • 2007
  • Metallo-organic decomposition(MOD)법으로 willemite 녹색 형광체를 합성하였고, 열처리 온도($800{\sim}1100^{\circ}C$) 및 Mn 활성제 농도($4{\sim}12 mol%$)에 따른 발광특성과 상합성에 대해 조사하였다. 254nm 여기원을 사용한 측정에서 형광체의 열처리 온도가 $800^{\circ}C$에서 $1000^{\circ}C$로 증가함에 따라 상대 발광 피크강도는 크게 증가하였고, XRD 분석 결과 $1000^{\circ}C$ 이상의 열처리 온도에서 전형적인 willemite 결정 구조를 보여 주었다. $1000^{\circ}C$의 온도로 열처리한 willemite 형광체는 Mn 활성제 농도가 8mol% 일 때 최대 발광 강도를 나타내었으며 10mol% 이상에서는 발광 강도가 급격히 저하되는 농도 ??칭 현상이 관찰되었다. SEM 분석 결과 형광체 입자 형상은 구형에 가까웠으며 $1000^{\circ}C$에서 소성된 형광체 입자 크기는 약 $0.4{\sim}0.5{\mu}m$ 이었다.

스크린 프린팅된 탄소나노튜브의 전계방출 특성 (Field Emission Properties of Screen Printed Carbon Nanotubes)

  • 이양두;이정아;문승일;박정훈;한종훈;유재은;이윤희;남산;주병권
    • 한국전기전자재료학회논문지
    • /
    • 제17권5호
    • /
    • pp.541-544
    • /
    • 2004
  • Multi- wall carbon nanotubes(MWNTs) were synthesized by thermal chemical vapor deposition. The paste for screen printing was composed of MWNTs, organic vehicle and glass frit. Carton nanotube paste was screen-printed on ITO(indium tin oxide) deposited soda lim을 glass, and then heat treatment was performed. Before the surface treatment, turn on field of derive was 2.6 V/$\mu\textrm{m}$. After the surface treatment, the value was changed into 1.8 V/$\mu\textrm{m}$. The anode current of the derive with 2.83 V/$\mu\textrm{m}$(turn on field) was changed 4 $\mu\textrm{A}$ into 390 $\mu\textrm{A}$ at 1,700 V. Adsorption effect of MWNTs onto phosphor of anode plate was observed by the field emission measurement and resulted in bad effects on properties of devices lifetime and emission lighting.

분무열분해법으로 제조된 SrAl2O4:Ho3+ 녹색 형광체의 발광특성 (Luminescence Characterization of SrAl2O4:Ho3+ Green Phosphor Prepared by Spray Pyrolysis)

  • 정경열;김우현
    • Korean Chemical Engineering Research
    • /
    • 제53권5호
    • /
    • pp.620-626
    • /
    • 2015
  • $Ho^{3+}$가 도핑된 $SrAl_2O_4$ 상향전환 형광체 분말을 분무열분해법으로 제조하고 활성제의 농도, 후 열처리 온도 변화에 따른 결정학적 구조와 발광 특성을 조사하였다. 또한 유기 첨가제 사용에 따른 형광체의 결정구조, 표면적 및 휘도 변화를 조사하였다. $SrAl_2O_4:Ho^{3+}$$Ho^{3+}$$^5F_4/^5S_2{\rightarrow}^5I_8$ 전이에 기인한 강한 녹색 발광을 보였다. 가장 높은 발광 강도를 보이는 $Ho^{3+}$ 농도는 0.1%였고, 그 이상의 농도에서는 활성 이온간 쌍극자-쌍극자 상호 작용에 의에 농도소강이 일어나 발광 휘도는 급격히 감소하였다. 여기 광원의 전력 세기에 따른 발광 휘도 변화 관찰로부터 $SrAl_2O_4:Ho^{3+}$의 녹색 발광은 2광자가 관여된 바닥상태흡수-여기상태흡수 과정을 통해 효율적으로 일어남이 확인되었다. 합성된 분말의 주상은 단사정계이고 일부 육방정계 상이 존재하였다. 후 열처리 온도를 $1000^{\circ}C$에서 $1350^{\circ}C$로 증가시킴에 따라 $SrAl_2O_4:Ho^{3+}$는 육방정계 상이 줄어 들면서 단상정계의 결정성이 향상되었다. 그러나 $1350^{\circ}C$에서도 일부 육방정계 상은 존재하였다. 구연산(CA)과 에틸렌 글리콜(EG)을 첨가해준 분무 용액으로부터 제조한 경우, 육방정계 상이 없는 순수한 단사정계 상으로 향상된 결정성을 가지는 $SrAl_2O_4:Ho^{3+}$가 제조되었다. 또한 유기 첨가제와 함께 N,N-Dimethylformamide(DMF)를 분무용액에 넣어 줌으로써 형광체의 표면적을 크게 감소시킬 수 있었다. 그 결과 CA/EG/DMF를 넣고 제조한 $SrAl_2O_4:Ho^{3+}$ 형광체는 유기 첨가물 없이 제조한 형광체에 비해 발광 휘도가 약 168% 향상되었다. 이러한 휘도 증대는 $SrAl_2O_4:Ho^{3+}$ 형광체의 결정상이 순수해졌고, 결정성 증대와 표면 결함을 최소화시킨 결과라고 결론지었다.

Fabrication of GaN Ring Structure with Broad-band Emission Using MOCVD and Wet Etching Techniques

  • Sim, Young-Chul;Lim, Seung-Hyuk;Cho, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.243.1-243.1
    • /
    • 2016
  • Recently, many groups have attempted to fabricate 3-dimensional (3D) structures of GaN such as pyramids, rods, stripes and annulars. Since quantum structures on non-polar and semi-polar planes of 3D structures have less influence of internal electric filed, multi quantum wells (MQWs) formed on those planes have high quantum efficiency. Especially, pyramidal and annular structures consist of various crystal planes with different emission wavelength, providing a possibillity of phosphor-free white light emtting diodes (WLEDs).[1] However, it still has problem to obtain high color rendering index (CRI) number because of narrow-band emission and poor indium composition caused by the formation of few number of facets during metal-organic chemical vapor deposition growth.[2] If we can fabricate 3D structure having more various facets, we can make broad-band emittied WLEDs and improve CRI number. In this study, we suggest a simple method to fabricate 3D structures having various facet and containing high indium composition by means of a combination of metal-organic chemical vapor deposition and wet chemical etching techniques.

  • PDF

인광을 이용한 유기 EL 소자 특성 연구 (Study on the Characteristics of Organic EL Device Using Phosphorescence)

  • 김영관;손병청;김준호
    • 한국응용과학기술학회지
    • /
    • 제18권3호
    • /
    • pp.186-190
    • /
    • 2001
  • By fabricating the organic light-emitting devices (OLEDs) based on phosphorescent material, the internal quantum efficiency can reach 100%, compared to 25% in the case of the fluorescent material. Thus, the phosphorescent OLEDs have recently been extensively studied and showed higher internal quantum efficiencies then the conventional OLEDs. In this study, we investigated the characteristics of the phosphorescent OLEDs, with the green emitting phosphor, $Ir(ppy)_{3}$, (tris(2-phenylpyridine)iridium). The devices with a structure of $ITO/TPD/Ir(ppy)_{3}$ doped in the host material $/BCP/Alq_{3}/Li:Al/Al$ were fabricated, and its electrical and optical characteristics were studied. By changing the doping concentration of $Ir(ppy)_{3}$, we fabricated several devices and investigated the device characteristics. OLEDs doped into BCP by 10% showed the best characteristics. For 10% doped OLEDs, the maximum luminance of was over 10000 $cd/m^{2}$, and the maximum power efficiency was 7.14 lm/W.