• 제목/요약/키워드: Organic nanowires

Search Result 52, Processing Time 0.028 seconds

All-Organic Nanowire Field-Effect Transistors and Complementary Inverters Fabricated by Direct Printing

  • Park, Gyeong-Seon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.632-632
    • /
    • 2013
  • We generated single-crystal organic nanowire arrays using a direct printing method (liquidbridge- mediated nanotransfer molding) that enables the simultaneous synthesis, alignment and patterning of nanowires from molecular ink solutions. Using this method, single-crystal organic nanowires can easily be synthesized by self-assembly and crystallization of organic molecules within the nanoscale channels of molds, and these nanowires can then be directly transferred to specific positions on substrates to generate nanowire arrays by a direct printing process. The position of the nanowires on complex structures is easy to adjust, because the mold is movable on the substrates before the polar liquid layer, which acts as an adhesive lubricant, is dried. Repeated application of the direct printing process can be used to produce organic nanowire-integrated electronics with twoor three-dimensional complex structures on large-area flexible substrates. This efficient manufacturing method is used to fabricate all-organic nanowire field-effect transistors that are integrated into device arrays and inverters on flexible plastic substrates.

  • PDF

High-Performance Single-Crystal Organic Nanowire Field-Effect Transistors of Indolocarbazole Derivatives

  • Park, Gyeong-Seon;Jeong, Jin-Won;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.368-368
    • /
    • 2012
  • We report solution-processed, high-performance single-crystal organic nanowire transistors fabricated from a novel indolocarbazole (IC) derivative. The direct printing process was utilized to generate single-crystal organic nanowire arrays enabling the simultaneous synthesis, alignment and patterning of nanowires using molecular ink solutions. Using this method, single-crystal organic nanowires can easily be synthesized by self-assembly and crystallization of organic molecules within the nanoscale channels of molds, and these nanowires can then be directly transferred to specific positions on substrates to generate nanowire arrays by a direct printing process. These new molecules are particularly suitable for p-channel organic field-effect transistors (OFETs) because of the high level of crystallinity usually found in IC derivatives. Selected area diffraction (SAED) and X-ray diffraction (XRD) experiments on these solution-processed nanowires showed high crystallinity. Transistors fabricated with these nanowires gave a hole mobility as high as 1.0 cm2V-1s-1 with nanowire arrays with the direct printing process.

  • PDF

Single-Crystal Organic Semiconductor Nanowires as Building Blocks for Nanojunction Devices

  • Lee, Gi-Seok;Lee, Rin;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.261.1-261.1
    • /
    • 2013
  • Well-aligned nanowire arrays can be used as building blocks for nanoscale device. Recently, we reported that well-aligned single-crystal organic nanowires has been created by using a direct printing method which is named liquid-bridge mediated nanotransfer molding (LB-nTM). Moreover, multi-layering nanostructures can be fabricated by repeating this printing process. As a result, it is possible to make simple and basic concept of heterojunction devices such as crossed nanowire devices. We fabricated crossed single-crystal organic nanowires nanojunction devices from 6,13-bis (triisopropylsilylethynyl) pentacene (TIPS-PEN) and fullerene (C60) single-crystal nanowires using by direct printing method in solution process. Crossed TIPSPEN/ C60 single-crystal nanowires diode has rectifying behavior with on/off ratios of ~13. In addition, the device shows photodiode characteristics as well as rectification. Our study represent methodology of heterojunction devices using single-crystal nanowires, thereby provide a new direction of future nanoelectronics.

  • PDF

Fabrication of Large-Scale Single-Crystal Organic Nanowire Arrays for High-Integrated Flexible Electronics

  • Park, Gyeong-Seon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.266.1-266.1
    • /
    • 2013
  • Large-scale single-crystal organic nanowire arrays were generated using a direct printing method (liquidbridge- mediated nanotransfer molding) that enables the simultaneous synthesis, alignment and patterning of nanowires from molecular ink solutions. Using this method, single-crystal organic nanowires can easily be synthesized by self-assembly and crystallization of organic molecules within the nanoscale channels of molds, and these nanowires can then be directly transferred to specific positions on substrates to generate nanowire arrays by a direct printing process. Repeated application of the direct printing process can be used to produce organic nanowire-integrated electronics with two- or three-dimensional complex structures on large-area flexible substrates. This efficient manufacturing method is used to fabricate all-organic nanowire field-effect transistors that are integrated into device arrays and inverters on flexible plastic substrates.

  • PDF

Fabrication of Organic Nanowire Electronics by Direct Printing Method

  • Park, Gyeong-Seon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.563-563
    • /
    • 2012
  • We report a one-step fabrication of single-crystal organic nanowire arrays on substrates using a new direct printing method (liquid-bridge-mediated nanotransfer moulding, LB-nTM), which can simultaneously enable the synthesis, alignment and patterning of the nanowires using molecular ink solutions. Two- or three-dimensional complex structures of various single-crystal organic nanowires were directly fabricated over a large area with a successive process. The position of the nanowires can be aligned easily on complex structures because the mold is movable on substrates before drying the polar liquid layer, which acts as an adhesive lubricant. This efficient manufacturing method can produce a wide range of optoelectronic devices and integrated circuits with single-crystal organic nanowires.

  • PDF

VOCs(Volatile Organic Compounds) sensor using SnO2 nanowires (산화주석 나노선을 이용한 VOCs 센서)

  • Hwang, In-Sung;Kim, Sun-Jung;Kim, Yoon-Sung;Ju, Byeong-Kwon;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.69-74
    • /
    • 2008
  • VOCs (Volatile Organic Compound) sensors were fabricated using $SnO_2$nanowires-based thin films and its gas sensing behaviors were studied. The $SnO_2$ nanowires synthesized from a thermal evaporation process were dispersed in a solution and the sensor film was prepared by dropping the slurry on the substrate with the electrodes and an embedded heater. The gas response (Ra/Rg, Ra: resistance in air, Rg: resistance in gas) to $30{\sim}40$ ppm Benzene, Ethyl Benzene, o-xylene were in the range of $39{\sim}42$, which were significantly higher than those to 50 ppm of CO, $CH_4$ and $C_3H_8$ ($12{\sim}19$).

A Facile Method for the Synthesis of Freestanding CuO Nanoleaf and Nanowire Films

  • Zhao, Wei;Jung, Hyunsung
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.360-364
    • /
    • 2018
  • A facile method to fabricate freestanding CuO nanoleaves and CuO nanowires-based films was demonstrated. $Cu(OH)_2$ nanoleaves and nanowires were prepared by a hydrolysis reaction in aqueous solution including pyridine and NaOH with the tailored concentrations at room temperature. The films of freestanding CuO nanoleaves and CuO nanowires can be successfully obtained via the simple vacuum infiltration following a thermal dehydration reaction. The morphologies and crystallinity of the $Cu(OH)_2$ nanoleaves/nanowires and CuO nanoleaves/nanowires were characterized by XRD, SEM, TEM and FT-IR. The films fabricated with freestanding CuO nanoleaves and nanowires in this study may be applicable for building high-efficiency organic binder-free devices, such as gas sensors, batteries, photoelectrodes for water splitting and so on.

Fabrication and Characterization of Conjugated Polymer Nanowires with Uniformed Size (AAO 템플레이트을 이용한 균일한 공액고분자 나노와이어)

  • Khim, Dongyoon;Kim, Dong-Yu;Noh, Yong-Young
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.205-208
    • /
    • 2014
  • Here, we reported mass-produced organic nanowires with uniform sizes based on poly(9,9-dioctylflurorene) (PFO), poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT), (regioregular poly(3-hexylthiophene) (P3HT) which are well known as organic semiconductors for opto/electronics applications, using a melt-assisted wetting method with anodic alumina membrane. The conjugated polymer nanowires showed uniformed diameters (D=250~300 nm) and lengths ($L={\sim}30{\mu}m$) with defect free smooth surface regardless of a kinds of semiconductors. In addition, the nanowires were uniformly deposited onto glass substrates by spray-coating method. Under the UV light irradiation, PFO and F8BT nanowires showed blue and yellow emissions, respectively.

Electrodeposition of Cobalt Nanowires

  • Ahn, Sungbok;Hong, Kimin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.927-930
    • /
    • 2013
  • We developed an electroplating process of cobalt nanowires of which line-widths were between 70 and 200 nm. The plating electrolyte was made of $CoSO_4$ and an organic additive, dimethyldithiocarbamic acid ester sodium salt (DAESA). DAESA in plating electrolytes had an accelerating effect and reduced the surface roughness of plated cobalt thin films. We obtained void-free cobalt nanowires when the plating current density was 6.25 mA/$cm^2$ and DAESA concentration was 1 mL/L.

Ag Nanowires Prepared by a Modified Polyol Method with 1,4-Benzoquinone Additives

  • Kang, Miseon;Chung, Eunseon;Kim, Sang-Ho;Rhee, Seog Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3209-3212
    • /
    • 2014
  • This paper describes a selective synthetic method of fabricating Ag nanowires by using a modified polyol process. To synthesize the Ag nanowire, an ethylene glycolic solution of silver nitrate and an ethylene glycolic solution of polyvinylpyrrolidone solution containing a small amount of organic oxidant, 1,4-benzoquinone, were slowly added to a hot ethylene glycol medium at $160^{\circ}C$ for 8 min using a syringe pump. The reaction mixtures were heated for an additional 45 min and cooled to room temperature. Finally, the silver nanomaterials were isolated from the mixture by centrifugation. The crystal structure of the nanomaterials was investigated by powder X-ray diffraction analyses, and their morphology was investigated by scanning electron microscopy. A small amount of organic oxidant, 1,4-benzoquinone, played a significant role in controlling the morphology during crystal growth. Consequently, Ag nanowires rather than Ag nanoparticles were selectively obtained.