DOI QR코드

DOI QR Code

Electrodeposition of Cobalt Nanowires

  • Ahn, Sungbok (Department of Physics, Chungnam National University) ;
  • Hong, Kimin (Department of Physics, Chungnam National University)
  • Received : 2012.12.06
  • Accepted : 2012.12.28
  • Published : 2013.03.20

Abstract

We developed an electroplating process of cobalt nanowires of which line-widths were between 70 and 200 nm. The plating electrolyte was made of $CoSO_4$ and an organic additive, dimethyldithiocarbamic acid ester sodium salt (DAESA). DAESA in plating electrolytes had an accelerating effect and reduced the surface roughness of plated cobalt thin films. We obtained void-free cobalt nanowires when the plating current density was 6.25 mA/$cm^2$ and DAESA concentration was 1 mL/L.

Keywords

References

  1. Gijs, M. A. M. Microfluid Nanofluid 2004, 1, 22.
  2. Kazakova, O.; Gallop, J. C.; See, P.; Cox, D.; Perkins, G. K.; Moore, J. D.; Cohen, L. F. IEEE Trans. Magn. 2009, 45, 4499. https://doi.org/10.1109/TMAG.2009.2025513
  3. Graham, D. L.; Ferreira, H. A.; Freitas, P. P.; Cabral, J. M. S. Bio. Sens. Bioelectron. 2003, 18, 483. https://doi.org/10.1016/S0956-5663(02)00205-1
  4. Rife, J. C.; Miller, M. M.; Sheehan, P. E.; Tamanaha, C. R.; Tondra, M.; Whitman, L. J. Sens. Actuat. 2003, A107, 209.
  5. Thanh, N. T.; Kim, D. Y.; Kim, C. G. J. Magnetics 2007, 12, 40. https://doi.org/10.4283/JMAG.2007.12.1.040
  6. Ejsing, L.; Hansen, M. F.; Menon, A. K.; Fereira, H. A.; Graham, D. L.; Freitas, P. P. Appl. Phys. Lett. 2004, 84, 4729. https://doi.org/10.1063/1.1759380
  7. Hulteen, J. C.; Martin, C. R. J. Mater. Chem. 1997, 7, 1075. https://doi.org/10.1039/a700027h
  8. Huczko, A. Appl. Phys. A, Mater. Sci. Process 2000, 70, 365. https://doi.org/10.1007/s003390051050
  9. Sudha Rani, V.; Caltun, O. F.; Yoon, S. S.; Parvatheeswara Rao, B.; Kim, C. G. J. Opt. Adv. Mater. 2007, 10, 7.
  10. Bantu, Kazadi Mukenga.; Rivas, J.; Zaragoza, G.; Lopez-Quintela, M. A.; Blanco, M. C. J. Appl. Phys. 2001, 89, 6.
  11. Rani, V. S.; Anandakumar, S.; Lee, H.; Bang, W.; Hong, K.; Yoon, S. S.; Jeong, J.-R.; Kim, C.-G. Phys. Status Solidi A 2009, 206, 667. https://doi.org/10.1002/pssa.200881262
  12. Moffat, T. P.; Bonevich, J. E.; Huber, W. H.; Stanishevsky, A.; Kelly, D. R.; Stafford, G. R.; Josell, D. J. Electrochem. Soc. 2000, 147, 4524. https://doi.org/10.1149/1.1394096
  13. Josell, D.; Wheeler, D.; Huber, W. H.; Moffat, T. P. Phys. Rev. Lett. 2001, 87, 016102. https://doi.org/10.1103/PhysRevLett.87.016102
  14. Reid, J. Jpn. J. Appl. Phys. 2001, 40, 2650. https://doi.org/10.1143/JJAP.40.2650
  15. West, A. C.; Mayer, S.; Reid, J. Electrochem. Solid-State Lett. 2001, 4, C50. https://doi.org/10.1149/1.1375856
  16. Moffat, T. P.; Wheeler, D.; Edelstein, M. D.; Josell, D. IBM J. Res. Dev. 2005, 49, 19. https://doi.org/10.1147/rd.491.0019
  17. Moffat, T. P.; Wheeler, D.; Witt, C.; Josell, D. Electrochem. Solid- State Lett. 2002, 5, C110. https://doi.org/10.1149/1.1521290
  18. Lee, J. H.; Lee, J. J.; Bae, J. H.; Bang, W. B.; Hong, K. M.; Lee, M. H.; Pyo, S. G.; Kim, S. B.; Kim, J.-G. J. Electrochem. Soc. 2006, 153, C521. https://doi.org/10.1149/1.2203098
  19. Moffat, T.; Bonevich, J.; Huber, W.; Stanishevsky, A.; Kelly, D.; Stafford, G.; Josell, D. J. Electrochem. Soc. 2000, 147, 4524. https://doi.org/10.1149/1.1394096
  20. Blondel, A.; Meier, J. P.; Doudin, B.; Ansermet, J.-Ph. Appl. Phys. Lett. 1994, 65, 5.
  21. Bard, A. J.; Faulkner, L. R. Electrochemical Methods, Fundamentals and Applications; Wiley: New York, 2001.
  22. Operation Manual, Qualilab QL-10, ECI Technology.
  23. Suh, H. Y.; Keum, D. Y.; Kim, J.-G.; Song, K.; Ko, Y.-D.; Chung, J.-S.; Hong, K. M. Electrochem. Solid-State Lett. 2011, 14, H483. https://doi.org/10.1149/2.020112esl