• 제목/요약/키워드: Organic methane

검색결과 465건 처리시간 0.037초

진해 당동만의 성층과 빈산소에 따른 퇴적물내 혐기층 발달이 메탄 거동에 미치는 영향 연구 (A Study on the Effect of the Development of Anaerobic Respiration Processes in the Sediment with the Water-column Stratification and Hypoxia and Its Influence on Methane at Dangdong Bay in Jinhae, Korea)

  • 김서영;안순모
    • Ocean and Polar Research
    • /
    • 제44권1호
    • /
    • pp.1-11
    • /
    • 2022
  • Hypoxia can affect water-atmosphere methane flux by controlling the production and consumption processes of methane in coastal areas. Seasonal methane concentration and fluxes were quantified to evaluate the effects of seasonal hypoxia in Dangdong Bay (Gyeongsangnamdo, Jinhae Bay, South Korea). Sediment-water methane flux increased more than 300 times during hypoxia (normoxia and hypoxia each 6, 1900 µmol m-2 d-1), and water-atmospheric methane flux and bottom methane concentration increased about 2, 10 times (normoxia and hypoxia each 190, 420 µmol m-2 d-1; normoxia and hypoxia each 22, 230 nM). Shoaling of anaerobic decomposition of organic matter in the sediments during the hypoxia (August) was confirmed by the change of the depth at which the maximum hydrogen sulfide concentration was detected. Shoaling shortens the distance between the water column and methanogenesis section to facilitate the inflow of organic matter, which can lead to an increase in methane production. In addition, since the transport distance of the generated methane to the water column is shortened, consumption of methane will be reduced. The combination of increased production and reduced consumption could increase sediment-aqueous methane flux and dissolved methane, which is thought to result in an increase in water-atmospheric methane flux. We could not observe the emission of methane accumulated during the hypoxia due to stratification, so it is possible that the estimated methane flux to the atmosphere was underestimated. In this study, the increase in methane flux in the coastal area due to hypoxia was confirmed, and the necessity of future methane production studies according to oxygen conditions in various coastal areas was demonstratedshown in the future.

Effects of hydrothermal pretreatment on methane potential of anaerobic digestion sludge cake of cattle manure containing sawdust as bedding materials

  • Jun-Hyeong Lee;Chang-Hyun Kim;Young-Man Yoon
    • Animal Bioscience
    • /
    • 제36권5호
    • /
    • pp.818-828
    • /
    • 2023
  • Objective: The purpose of this study was to analyze the effect of the hydrothermal pretreatment of anaerobic digestion sludge cake (ADSC) of cattle manure on the solubilization of organic matter and the methane yield to improve the anaerobic digestion efficiency of cattle manure collected from the sawdust pens of cattle. Methods: Anaerobic digestion sludge cake of cattle manure was thermally pretreated at 160℃, 180℃, 200℃, and 220℃ by a hydrothermal pressure reactor, and the biochemical methane potential of ADSC hydrolysate was analyzed. Methane yield recovered by the hydrothermal pretreatment of ADCS was estimated based on mass balance. Results: The chemical oxygen demand solubilization degree (CODs) of the hydrothermal hydrolysate increased to 63.56%, 67.13%, 70.07%, and 66.14% at the hydrothermal reaction temperatures of 160℃, 180℃, 200℃, and 220℃, respectively. Considering the volatile solids content obtained after the hydrothermal pretreatment, the methane of 10.2 Nm3/ton-ADSC was recovered from ADSC of 1.0 ton, and methane yields of ADSC hydrolysate increased to 15.6, 18.0, 17.4, and 17.2 Nm3/ton-ADSC. Conclusion: Therefore, the optimal hydrothermal reaction temperature that yielded the maximum methane yield was 180℃ based on mass balance, and the methane yield from cattle manure containing sawdust was improved by the hydrothermal pretreatment of ADSC.

이상 혐기성 공정을 이용한 음식물류폐기물폐수와 양돈폐수의 혼합액으로부터 수소 및 메탄 생산 (Hydrogen and Methane Production from Mixture of Food Wastewater and Swine Wastewater using Two-Phase Anaerobic Process)

  • 김충곤;강선홍
    • 상하수도학회지
    • /
    • 제22권3호
    • /
    • pp.299-306
    • /
    • 2008
  • This study has been conducted to derive the bio-energy, hydrogen and methane production, from mixture of food wastewater and swine wastewater, the high strength organic wastewater and to increase effluent quality. To overcome this limitation in one-phase anaerobic process, two-phase anaerobic process combining hydrogen fermenter and methane fermenter was applied. In this system $2,323ml\;H_2/L$ was produced daily from Run II where 500 ml of heattreated sludge in methane fermenter was injected, and methane produced from methane fermenter did not show big difference regardless of the amount of returning sludge at each Run. It was concluded that the two-phase anaerobic process was the appropriat process to produce hydrogen and methane simultaneously and stably. Influent $TCOD_{Cr}$ to two-phase anaerobic process showed the range of 132~145 g/L(average 140 g/L), and effluent $TCOD_{Cr}$ range was 25~40 g/L(average 32 g/L), and organic removal efficiency showed 71~82%(average 76.3%).

혐기소화조에서 메탄 발생에 영향을 미치는 인자 분석 (The Parameter Analysis of Methane Production in Anaerobic Fermenter)

  • 최광근;신종철;전현희;김상용;이진원
    • KSBB Journal
    • /
    • 제18권6호
    • /
    • pp.473-478
    • /
    • 2003
  • 본 연구의 목적은 메탄을 최대로 발생시킬 수 있는 최적조건을 탐색하는데 있다. 탐색한 최적조건 인자로는 온도, pH, 탄소원, 그리고 질소원이며, 메탄 발생에 영향을 주는 저해제에 대해서도 조사하였다. 결과적으로, 온도는 3$0^{\circ}C$, pH는 중성영역, 탄소원은 methanol, 질소원은 NH$_4$Cl에서 최대의 메탄을 얻을 수 있었으며, 메탄 생성에 대한 저해재의 영향을 조사한 결과 10 mM 미만의 극소량이라도 2-bromoethanesulfonic acid가 존재할 경우 메탄 발생량이 감소하는 결과를 보였다. 메탄 발생에 대한 pH 변화를 조사해 본 결과, pH가 7.5에서 6.5로 내려가는 동안에는 메탄 발생량이 증가하였으나, 6.5에서 6.0으로 변화되면서는 메탄 발생량이 감소하였다. 따라서 pH 변화를 실시간으로 측정하여 상분리 발효를 적용하면 최적 메탄 생성 조건을 유지할 수 있을 것으로 사료된다. 또한 메탄 발생 시 배지 내에 생성되는 유기산을 측정해 본 결과 생성된 유기산 중 formic acid가 0.1M로 최대량을 보였다.

농·축 ·수산 폐기물의 메탄전환에 관한 기초연구 (A Fundamental Study on the Methane Conversion of Agriculture, Forestry and Fisheries Wastes)

  • 홍순석;박상전;홍종준
    • 유기물자원화
    • /
    • 제6권1호
    • /
    • pp.31-42
    • /
    • 1998
  • 농 축 수산 유통집하장에서 발생하는 유기질 폐기물의 메탄 전환 기초 연구로서 실험실 규모로 수행하였다. 선발된 Run B 시료는 분석 결과 C/N Ratio는 18.41, TCOD는 168,960mg/L의 것이 얻어졌다. 생화학적 메탄 생산성 실험에서 이론 생산량은 313.6mg/L VS added이었고 실질적인 생산량은 234.2mg/L VS added로 혐기성소화에 의한 74%의 메탄 전환이 일어났으며, 반응속도론적 고찰에서 속도 상수는 $0.2476d^{-1}$이었다. 그리고 3단 여과막 충진형 반응기는 공시험 반응기보다 메탄함량은 16% 높고, TCOD 및 SCOD는 각각 44.7% 및 44.2%가 감소되었다.

  • PDF

유기성 폐기물을 이용한 고온 메탄 발효의 특성 (Characteristics of Thermophilic Methane Fermentation Using the Organic Wastes)

  • 김남천;최석순
    • 유기물자원화
    • /
    • 제16권2호
    • /
    • pp.29-37
    • /
    • 2008
  • 본 연구에서는 하수슬러지, 음식물쓰레기, 분뇨계 폐기물과 같은 고농도 유기성 폐기물의 고온 메탄 발효에 대하여 공정, 응용 현황 및 장 단점의 여러가지 측면에서 고찰이 이루어졌다. 고온 메탄 발효의 장점은 반응속도가 빠르고, 높은 부하량에서 처리가능하고, 병원성 미생물의 사멸율이 높고, 소화오니는 보다 위생적이었다. 그러나, 단점으로서는 발효시설을 가열하는데 많은 에너지를 요구하고, 저농도 유기성 폐기물에서는 잉여에너지를 얻을 수 없고, 발효처리 후 상등수 수질이 떨어지게 되며, 그 결과 배수처리에 부담이 된다. 특히, 고농도 메탄 발효의 경우 영양염 부족이나 ${NH_4}^+-N$에 의한 방해가 일어나기 쉬우므로, 이에 대하여 적절한 대안이 요구된다. 일반적으로 고온 메탄 발효는 고농도의 우분뇨와 음식물 유기성 폐기물의 좋은 처리 수단으로 고려되었다. 반대로, 폐기물 그 자체의 농도가 낮을 경우와 ${NH_4}^+-N$이 3.000mg/L 이상 높게 되는 조건에서 고온 메탄 발효는 바람직하지 않는 결과를 나타내게 된다.

  • PDF

산업계 유기성폐기물 바이오가스 생산 효율에 관한 연구 (Study on bio-gas production efficiency from industrial organic waste)

  • 이호령;진효언;신대윤
    • 상하수도학회지
    • /
    • 제26권5호
    • /
    • pp.629-636
    • /
    • 2012
  • This study focuses on the feasibility of bio-gas production using anaerobic digestion by measuring methane generation and biodegradability through the BMP test of industrial organic wastes. Organic wastes consist of entrails of pigs and organic residues of rumen generated from slaughter houses, wastewater sludge from slaughter waste water, fish offal and residues of vegetables from public wholesale markets, and wastewater sludge from the process of wastewater treatment in paper mill. The cumulative methane production by BMP test ranges from 149.3 ml/g-VS to 406.6 ml/g-VS and this is similar to methane generation of the normal wastewater sludge and food waste. As a result of measurement of biodegradability, wastewater sludge (S1 ~ S4) is low, ranging from 27.1% to 58.9 % and organic residues of rumen (G1) is low at 49.6 %. In conclusion, it turned out that raising the hydrolysis by various pre-treatments is necessary in order to produce bio-gas by using industrial organic wastes.

농축산바이오매스 고온 혐기성 생분해도 평가 (Thermophilic Anaerobic Biodegradability of Agro-industrial Biomass)

  • 허남효;강호;이승헌
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.101-101
    • /
    • 2010
  • Anaerobic digestion(AD) is the most promising method for treating and recycling of different organic wastes, such as organic fraction of municipal solid waste, household wastes, animal manure, agro-industrial wastes, industrial organic wastes and sewage sludge. During AD, i.e. organic materials are decomposed by anaerobic forming bacteria and fina1ly converted to excellent fertilizer and biogas which is a mixture of carbon dioxide and methane. AD has been one of the leading technologies that can make a large contribution to produce renewable energy and to reduce $CO_2$ and other green-house gas(GHG) emission, it is becoming a key method for both waste treatment and recovery of a renewable fuel and other valuable co-products. Currently some 80% of the world's overall energy supply of about 400 EJ per year in derived from fossil fuels. Nevertheless roughly 10~15% of this demand is covered by biomass resources, making biomass by far the most important renewable energy source used to date. The representative biofuels produced from the biomass are bioethanol, biodiesel and biogas, and currently biogas plays a smaller than other biofuels but steadily growing role. Traditionally anaerobic digestion applied for different biowaste e.g. sewage sludge, manure, other organic wastes treatment and stabilization, biogas has become a well established energy resource. However, the biowaste are fairly limited in respect to the production and utilization as renewable source, but the plant biomass, the so called "energy crops" are used for more biogas production in EU countries and the investigation on the biomethane potential of different crops and plant materials have been carried out. In Korea, with steadily increasing oil prices and improved environmental regulations, since 2005 anaerobic digestion was again stimulated, especially on the biogasification of different biowastes and agro-industrial biomass including "energy crops". This study have been carried out to investigate anaerobic biodegradability by the biochemical methane potential(BMP) test of animal manures, different forage crops i.e. "energy crops", plant and industrial organic wastes in the condition of thermophilic temperature, The biodegradability of animal manure were 63.2% and 58.2% with $315m^3CH_4/tonVS$ of cattle slurry and $370m^3CH_4/tonVS$ of pig slurry in ultimate methane yields. Those of winter forage crops were the range 75% to 87% with ultimate methane yield of $378m^3CH_4/tonVS$ to $450m^3CH_4/tonVS$ and those of summer forage crops were the range 81% to 85% with ultimate methane yield of $392m^3CH_4/tonVS$ to $415m^3CH_4/tonVS$. The forge crops as "energy crops" could be used as good renewable energy source to increase methane production and to improve biodegradability in co-digestion with animal manure or only energy crop digestion.

  • PDF

CO2 Reforming of Methane over Co-Pd/Al2O3 Catalysts

  • Itkulova, Sh. S.;Zhunusova, K.Z.;Zakumbaeva, G.D.
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권12호
    • /
    • pp.2017-2020
    • /
    • 2005
  • The supported bimetallic Co-containing catalysts promoted by the different amount of noble metal (Pd) have been studied in the dry reforming of methane. The activity, selectivity, stability and resistance to the carbon deposition of Co-Pd/$Al_2O_3$ catalysts depend on both the catalyst composition and process conditions. It has been observed that the Co-Pd/$Al_2O_3$ catalysts produce the various oxygenates from $CO_2$ + $CH_4$ at moderate pressures.

UASB 공정에 의한 고농도 축산폐수 처리시 유기물 제거와 메탄생성에 관한 연구 (A Study on Organics Removal and Methane Production during the Anaerobic Digestion of High-Strength Swine Wastes Using UASB Process)

  • 원철희;김승호;박은영;임재명
    • 산업기술연구
    • /
    • 제22권B호
    • /
    • pp.109-115
    • /
    • 2002
  • This research was performed to investigate the COD removal efficiency and methane production in slurry-typed swine wastes using UASB(upflow anaerobic sludge blanket)reactor. The USAB reactor was operated from 0.8 through 3.3days of HRT in a range of 3 to 15 kg $TCOD/m^3/day$ of volumetric organic loading rate. The removal rate of TCOD was increased with the increase of the HRT. The removal rate of TCOD at an HRT over 2days, became greater than 68% with the methane contents being from 70 to 80%. Methane production rates were increased from 0.27 to $0.36m^3\;CH_4/kg$ CODrem. as HRTs were increased from 0.8 to 3.3days.

  • PDF