• Title/Summary/Keyword: Organic media

Search Result 694, Processing Time 0.025 seconds

Media Optimization of Corynebacterium glutamicum for Succinate Production Under Oxygen-Deprived Condition

  • Jeon, Jong-Min;Thangamani, Rajesh;Song, Eunjung;Lee, Hyuk-Won;Lee, Hong-Weon;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.211-217
    • /
    • 2013
  • Corynebacterium glutamicum is one of the well-studied industrial strain that is used for the production of nucleotides and amino acids. Recently, it has also been studied as a possible producer of organic acids such as succinic acid, based on its ability to produce organic acids under an oxygen deprivation condition. In this study, we conducted the optimization of medium components for improved succinate production from C. glutamicum under an oxygen deprivation condition by Plackett-Burman design and applied a response surface methodology. A Plackett-Burman design for ten factors such as glucose, ammonium sulfate, magnesium sulfate, potassium phosphate ($K_2HPO_4$ and $KH_2PO_4$), iron sulfate, manganese sulfate, biotin, thiamine, and sodium bicarbonate was applied to evaluate the effects on succinate production. Glucose, ammonium sulfate, magnesium sulfate, and dipotassium phosphate were found to have significant influence on succinate production, and the optimal concentrations of these four factors were sequentially investigated by the response surface methodology using a Box-Behnken design. The optimal medium components obtained for achieving maximum concentration of succinic acid were as follows: glucose 10 g/l, magnesium sulfate 0.5 g/l, dipotassium phosphate ($K_2HPO_4$) 0.75 g/l, potassium dihydrogen phosphate ($KH_2PO_4$) 0.5 g/l, iron sulfate 6 mg/l, manganese sulfate 4.2 mg/l, biotin 0.2 mg/l, thiamine 0.2 mg/l, and sodium bicarbonate 100 mM. The parameters that differed from a normal BT medium were glucose changed from 40 g/l to 10 g/l, dipotassium phosphate ($K_2HPO_4$) 0.5 g/l changed to 0.75 g/l, and ammonium sulfate ($(NH_4)_2SO_4$) 7 g/l changed to 0 g/l. Under these conditions, the final succinic acid concentration was 16.3 mM, which is about 1.46 fold higher than the original medium (11.1 mM) at 24 h. This work showed the improvement of succinate production by a simple change of media components deduced from sequential optimization.

Effect of Bacterial Population from Rhizosphere of Various Foliage Plants on Removal of Indoor Volatile Organic Compounds (다양한 관엽식물의 근권부 박테리아 집단이 실내 휘발성 유기화합물질의 제거에 미치는 영향)

  • Chun, Se-Chul;Yoo, Mung-Hwa;Moon, Young-Sook;Shin, Mi-Ho;Son, Ki-Cheol;Chung, Ill-Min;Kays, Stanley J.
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.476-483
    • /
    • 2010
  • Total bacterial populations were cultured from the Hydroball cultivation media in the rhizospheres of 9 different plants including $Hedera$ $helix$ L. and $Dracaena$ $deremensis$ cv. Warneckii Compacta, etc. These cultured bacterial populations were studied to test if the bacterial populations in the plant growing pots may play a role on removal of volatile organic compounds (VOCs) such as benzene and toluene in the air. To meet this objective, first, we tested the possibility of removal of VOCs by the cultured total bacteria alone. The residual rates of benzene by the inoculation of total bacterial populations from the different plant growth media were significantly different, ranging from 0.741-1.000 of $Spathiphyllum$ $wallisii$ 'Regal', $Pachira$ $aquatica$, $Ficus$ $elastica$, $Dieffenbachia$ sp. 'Marrianne' Hort., $Chamaedorea$ $elegans$, compared to the control with residual rate of 0.596 (LSD, $P$=0.05). This trend was also similar with toluene, depending on different plants. Based on these results, we inoculated the bacterial population cultured from $P.$ $aquatica$ into the plant-growing pots of $P.$ $aquatica$, $F.$ $elastica$, and $S.$ $podophyllum$ inside the chamber followed by the VOCs injection. The inoculated bacteria had significant effect on the removal of benzene and toluene, compared to the removal efficacy by the plants without inoculation, indicating that microbes in the rhizosphere could play a significant role on the removal of VOCs along with plants.

Effectiveness Analysis on the Application of Ultraviolet and Plasma Treatment Devices for Water Sterilization (용수 살균을 위한 자외선과 플라즈마 처리장치 적용에 따른 효과분석)

  • Kim, Young Jae;Park, Jeon Oh;Lee, Haeng Lim
    • Journal of Marine Life Science
    • /
    • v.4 no.2
    • /
    • pp.86-90
    • /
    • 2019
  • This study aimed to compare the disinfection efficiencies of the ultraviolet and plasma systems, the two systems designed and commercialized to disinfect water in aquaculture, by putting each in a 100 ℓ water tank and concentrating 1.0 ℓ of treated water to check the changes in the number of bacteria in the samples. Each system was operated for 6 hours to culture the typical seawater bacteria in the Marine agar, Thiosulfate citrate bile salts sucrose agar and Salmonella Shigella agar media, respectively, to check the number of bacteria in the media, and the changes in the number of Edwardsiella piscicida in the treated water were checked after the artificial inoculation of E. piscicida in the disinfected seawater. As a result, the two disinfection systems showed the almost similar levels of bacterial reduction efficiency between 99.5% and 99.9%. However, the result of this study showed that, with 100 ℓ of water treated for the same length of time using the two systems, the plasma system turned out to disinfect bacteria in a shorter period of time than the UV system. However, as the changes in the number of bacteria were checked for a short length of time (6 hours) in this study, it was judged that, considering the actual aquaculture environment in which the quality of water significantly changes with feed residues, excretions and coastal contamination, etc., and a lot of biofilms and organic matter exist, the plasma system would be more efficient than the UV system as the former is capable of continuously maintaining a certain level of efficiency than the latter that is limited in terms of efficiency depending on the level of turbidity and the existence of organic matter.

Study on the Productivity of Microalgae Nannochloropsis sp. Using the Highly Efficient Vertical Photobioractor (수직형 고효율 광배양기를 통한 미세조류 Nannochloropsis sp.의 생장성 연구)

  • Kim, Young-Nam;Chung, Myung-Hee;Kim, Eun-Joo;Karnadi, Vita;Kim, Young-Jun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.1
    • /
    • pp.38-44
    • /
    • 2015
  • We have investigated the productivity of microalgae, Nannochloropsis sp., using highly efficient vertical photobioreactor which has been developed by the company IMBiz. This experiment was performed in the field for one month with 2 sets of 2 tons of media under autotrophic cultural mode. In the culture with 0.1% of $CO_2$, the average daily productivity was shown to be up to 0.953g per liter, and 0.574g per liter in the culture with only ambient air. The temperature ranged from $20^{\circ}C$ to $31^{\circ}C$, and it didn't make any differences on the productivity. The light intensity ranged from 5,000 Lux to 40,000 Lux. The light has been appeared to have a very close relationship with the productivity of microalgae. Meanwhile, the harvesting method of pressurefloating attempted in this photobioreactor was found to be very effective.

A Study on apply of submerged biofilter for nutrient removal (영양염류 제거를 위한 생물막 공정의 적용에 관한 연구)

  • 안승섭
    • Journal of Environmental Science International
    • /
    • v.9 no.5
    • /
    • pp.415-422
    • /
    • 2000
  • In this study the removal possibility of nutrients of T-P, NH3-N, NO3-N and T-N is examined through a positive experimental study using submerged biofilter of media packing channel method. From the analysis of nutrients removal efficiency for each run of the collected sample following results are obtained. Firstly the result of N/P surveying for inflow shows serious value that excess the limit value of 20 as the values are in the range of 12.0~42.7 and the average is 25.73. Secondly the highest concentration of the incoming NH3-N reaches double of the standard since the concentrations of NH3-N and NO3-N for inflow shows 0.06mg/$\ell$ and 2.5~3.8mg/$\ell$ respectively and the average removal rate which passed the submerged biofilter adopted in this study is a satisfactory level. Next the average removal rate of T-P of 51.5% shows the possiblity of entrophication removal since the removal rate of T-P of 66.8~68.8% in relative low temperature period of RUN 1~2 appeared higher than in RUN 3~6 and T-N shows relatively poor result with the average removal rate of 34.1% And it is known that the bigger BOD/P and BOD/N are the more removal rate increases from the examination result of the relation between BOD/P and BOD/N and the treatment water T-P and T-N to decide the relation with the concentration of organic matters and though that the appropriate proportion is necessary for effective removal of nitrogen and phsophorus.

  • PDF

Gene Cloning and Characterization of an ${\alpha}$-Amylase from Alteromonas macleodii B7 for Enteromorpha Polysaccharide Degradation

  • Han, Xuefeng;Lin, Bokun;Ru, Ganji;Zhang, Zhibiao;Liu, Yan;Hu, Zhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.254-263
    • /
    • 2014
  • Enteromorpha polysaccharides (EP) extracted from green algae have displayed a wide variety of biological activities. However, their high molecular weight leads to a high viscosity and low solubility, and therefore, greatly restrains their application. To solve this problem, bacteria from the surface of Enteromorpha were screened, and an Alteromonas macleodii strain B7 was found to be able to decrease the molecular weight of EP in culture media. Proteins harvested from the supernatant of the A. macleodii B7 culture were subjected to native gel electrophoresis, and a band corresponding to the Enteromorpha polysaccharide lyase (EPL) was detected by activity staining. The enzyme identity was subsequently confirmed by MALDI-TOF/TOF mass spectrometry as the putative ${\alpha}$-amylase reported in A. macleodii ATCC 27126. The amylase gene (amySTU) from A. macleodii B7 was cloned into Escherichia coli, resulting in high-level expression of the recombinant enzyme with EP-degrading activity. AmySTU was found to be cold-adapted; however, its optimal enzyme activity was detected at $40^{\circ}C$. The ${\alpha}$-amylase was highly stable over a broad pH range (5.5-10) with the optimal pH at 7.5-8.0. The highest enzyme activity was detected when NaCl concentration was 2%, which dropped by 50% when the NaCl concentration was increased to 16%, showing an excellent nature of halotolerance. Furthermore, the amylase activity was not significantly affected by tested surfactants or the presence of some organic solvents. Therefore, the A. macleodii strain B7 and its ${\alpha}$-amylase can be useful in lowering EP molecular weight and in starch processing.

Arabidopsis thaliana as Bioindicator of Fungal VOCs in Indoor Air

  • Lee, Samantha;Hung, Richard;Yin, Guohua;Klich, Maren A.;Grimm, Casey;Bennett, Joan W.
    • Mycobiology
    • /
    • v.44 no.3
    • /
    • pp.162-170
    • /
    • 2016
  • In this paper, we demonstrate the ability of Arabidopsis thaliana to detect different mixtures of volatile organic compounds (VOCs) emitted by the common indoor fungus, Aspergillus versicolor, and demonstrate the potential usage of the plant as a bioindicator to monitor fungal VOCs in indoor air. We evaluated the volatile production of Aspergillus versicolor strains SRRC 108 (NRRL 3449) and SRRC 2559 (ATCC 32662) grown on nutrient rich fungal medium, and grown under conditions to mimic the substrate encountered in the built environment where fungi would typically grow indoors (moist wallboard and ceiling tiles). Using headspace solid phase microextraction/gas chromatography-mass spectrometry, we analyzed VOC profiles of the two strains. The most abundant compound produced by both strains on all three media was 1-octen-3-ol. Strain SRRC 2559 made several terpenes not detected from strain SRRC 108. Using a split-plate bioassay, we grew Arabidopsis thaliana in a shared atmosphere with VOCs from the two strains of Aspergillus versicolor grown on yeast extract sucrose medium. The VOCs emitted by SRRC 2559 had an adverse impact on seed germination and plant growth. Chemical standards of individual VOCs from the Aspergillus versicolor mixture (2-methyl-1-butanol, 3-methyl-1-butanol, 1-octen-3-ol, limonene, and ${\beta}-farnesene$), and ${\beta}-caryophyllene$ were tested one by one in seed germination and vegetative plant growth assays. The most inhibitory compound to both seed germination and plant growth was 1-octen-3-ol. Our data suggest that Arabidopsis is a useful model for monitoring indoor air quality as it is sensitive to naturally emitted fungal volatile mixtures as well as to chemical standards of individual compounds, and it exhibits relatively quick concentration- and duration-dependent responses.

Removal Characteristic of Nitrogenous Compounds According to the Combination of Feeding Ratio between the Supernatant of Precipitation Tank and Raw Domestic Wastewater (침전조 상등액과 유입하수의 유량대비에 따른 하수 내 질소 화합물 제거특성)

  • Park, Sang Min;Park, Jin Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.4
    • /
    • pp.128-135
    • /
    • 2005
  • This study was done to improve the effectiveness of nitrification and denitrification using the aeration-anoxic combination method using CFSTR(continuous-flow stirred-tank reactor) attached with an anoxic reactor filled with a media. In order to calculate the concentration of nitric acid within the aeration tank proportional to the anoxic rate within the reactor, supernatant within the inflow and precipitation tanks were influxed into the anoxic reactor. The rate of nitrogen removal was calculated using the concentration of inflow and flow of returned supernatant. From the results of this experiment, the carbon source needed in the anoxic reactor came from the inflow so that anoxification was achieved completely using the inflow source without the introduction of an external carbon source. However, as the ratio of nitric acid becomes large in inflow and nitric acid flow, the carbon source within the input source decreases so that the concentration of carbon source is important.

  • PDF

A Study on Establishment of Similar Expousre Groups(SEGs) for Chemical and Biological Risk Factors in Farm Work (농작업시 발생하는 화학적 및 생물학적 위험요인에 대한 유사노출작업군 설정 연구)

  • Lee, Minji;Sin, Sojung;Kim, Hyocher;Heo, Jinyoung;Ahn, Minji;Kim, Kyungran;Kim, Kyungsu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.3
    • /
    • pp.292-298
    • /
    • 2020
  • Objectives: The aim of this research is to establish Similar Exposure Groups (SEGs) for chemical and biological risk factors that occur in farm work involving 24 tasks among 15 crops. Methods: To categorize SEGs, work type, work environment, and similar tasks for each crop were considered. After confirming the chemical risk factors (pesticides, inorganic dust-total dust and PM10, ammonia, and hydrogen sulfide) and biological factors (organic dust-total dust and PM10, and endotoxins) that occur in the crops and tasks, similar crops and tasks were selected as SEGs. Results: Among chemical risk factors, pesticides was selected for the SEGs, which was categorized by open field, greenhouse, fruit, and specialty crops. For inorganic dust, open field (plowing harrowing, seedling, planting, harvest, and sorting and packing) and specialty crops (plowing harrowing, seedling, planting, and harvest) were selected as SEGs. For ammonia and hydrogen sulfide, livestock (preparation of farm, management of nursery bed, feeding, shipment and manure treatment) were selected as SEGs. For biological risk factors such as organic dust (total dust, PM10) and endotoxins, open field (manure application), greenhouse (plowing harrowing, planting, manure application, and harvest), fruit (manure application), specialty crops (manure application, making furrows, mixing mushroom media, harvest, and sorting and packing), and livestock (preparation of farm, maintaining poultry litter, feeding, shipment and manure treatment) were selected as SEGs. Conclusions: To establish similar exposure groups in agriculture, it is important that the characteristics of each hazard factor are categorized by identifying risk factors occurring by tasks.

Efficient Target-Site Assay of Chemicals for Melanin Biosynthesis Inhibition of Magnaporthe grisea

  • Kim, Jin-Cheol;Son, Mi-Jung;Kim, Heung-Tae;Park, Gyung-Ja;Hahn, Hoh-Gyu;Nam, Kee-Dal;Cho, Kwang-Yun
    • The Plant Pathology Journal
    • /
    • v.16 no.3
    • /
    • pp.125-129
    • /
    • 2000
  • A rapid and efficient assay to determine melanin biosynthesis inhibition of Magnaporthe grisea, a causal agent of the rice blast, by chemicals was developed. Wells in 24-well plates were loaded with spore suspension of the fungus and three known melanin biosynthesis inhibitors of KC10017, tricyclazole, and carpropamid. Subsequent color changes of mycelia and culture media in the wells were observed 7 days after incubation. The wells treated with KC10017 (an inhibitor of polyketide synthesis step and/or pentaketide cyclization step) became colorless, whereas tricyclazole (an inhibitor of 1, 3, 8-trihydroxynaphthalene reductase) or carpropamid (an inhibitor of scytalone dehydratase)-treated wells exhibited red color. They did not show any inhibitory effect on fungal growth. The inhibition of reaction steps prior to 1, 3, 6, 8-tetrahydroxynaphthalene formation was easily determined by colorless medium and mycelia. However, it was impossible to distinguish between inhibition of reduction steps and inhibition of dehydration steps by colors of the cultures. It was accomplished through HPLC analysis of the melanin biosynthesis-involving pentaketide metabolites accumulated by the inhibitors. Through screening of a number of synthetic chemicals using the in vitro assay, we could find a novel chemical group of melanin biosynthesis inhibitor.

  • PDF