Effect of Bacterial Population from Rhizosphere of Various Foliage Plants on Removal of Indoor Volatile Organic Compounds

다양한 관엽식물의 근권부 박테리아 집단이 실내 휘발성 유기화합물질의 제거에 미치는 영향

  • Chun, Se-Chul (Department of Molecular Biotechnology, Konkuk University) ;
  • Yoo, Mung-Hwa (Department of Environmental Science, Konkuk University) ;
  • Moon, Young-Sook (Department of Molecular Biotechnology, Konkuk University) ;
  • Shin, Mi-Ho (Department of Molecular Biotechnology, Konkuk University) ;
  • Son, Ki-Cheol (Department of Environmental Science, Konkuk University) ;
  • Chung, Ill-Min (Department of Applied Biological Science, Konkuk University) ;
  • Kays, Stanley J. (The Plant Center, Department of Horticulture, University of Georgia)
  • 천세철 (건국대학교 분자생명공학과) ;
  • 류명화 (건국대학교 환경과학과) ;
  • 문영숙 (건국대학교 분자생명공학과) ;
  • 신미호 (건국대학교 분자생명공학과) ;
  • 손기철 (건국대학교 환경과학과) ;
  • 정일민 (건국대학교 응용생물과학과) ;
  • Received : 2009.09.08
  • Accepted : 2010.01.31
  • Published : 2010.06.30

Abstract

Total bacterial populations were cultured from the Hydroball cultivation media in the rhizospheres of 9 different plants including $Hedera$ $helix$ L. and $Dracaena$ $deremensis$ cv. Warneckii Compacta, etc. These cultured bacterial populations were studied to test if the bacterial populations in the plant growing pots may play a role on removal of volatile organic compounds (VOCs) such as benzene and toluene in the air. To meet this objective, first, we tested the possibility of removal of VOCs by the cultured total bacteria alone. The residual rates of benzene by the inoculation of total bacterial populations from the different plant growth media were significantly different, ranging from 0.741-1.000 of $Spathiphyllum$ $wallisii$ 'Regal', $Pachira$ $aquatica$, $Ficus$ $elastica$, $Dieffenbachia$ sp. 'Marrianne' Hort., $Chamaedorea$ $elegans$, compared to the control with residual rate of 0.596 (LSD, $P$=0.05). This trend was also similar with toluene, depending on different plants. Based on these results, we inoculated the bacterial population cultured from $P.$ $aquatica$ into the plant-growing pots of $P.$ $aquatica$, $F.$ $elastica$, and $S.$ $podophyllum$ inside the chamber followed by the VOCs injection. The inoculated bacteria had significant effect on the removal of benzene and toluene, compared to the removal efficacy by the plants without inoculation, indicating that microbes in the rhizosphere could play a significant role on the removal of VOCs along with plants.

실내식물 9종의 근권부 하이드볼 배지에서 배양된 세균집단이 공기중 벤젠과 같은 휘발성 유기화합물의 제거효과에 미치는 영향이 조사되었다. 여러 식물 근권부의 배양토에서 배양된 세균 집단은 벤젠을 제거할 수 있었는데, $Spathiphyllum$ $wallisii$ Regel, $Pachira$ $aquatica$, $Ficus$ $elastica$, $Dieffenbachia$ sp. 'Marrianne' Hort., $Chamaedorea$ $elegans$ 식물들은 벤젠의 초기농도를 1.000으로 기준하였을 때, 세균 집단이 전혀 없는 배지의 대조구 초기 농도 대비 잔류율이 0.596이었으나 상기 언급한 식물들은 0.741-1.000으로서 벤젠의 농도를 현저히 감소시켰다(LSD, $P$=0.05). 이와 같은 경향은 식물의 종류에 따라 차이는 있었지만 톨루엔의 경우에도 비슷하게 나타났다. 이러한 결과를 바탕으로 $P.$ $aquatic$ 근권부의 배양토로부터 배양된 세균 집단을 $P.$ $aquatica$, $F.$ $elastica$, $S.$ $podophyllum$에 접종하였을 때 접종하지 않은 식물들에 비하여 벤젠과 톨루엔을 현저히 제거하는 효과가 나타나, 근권부의 미생물 집단을 이용하여 공기 중 휘발성 유기화합물(VOC)을 제거할 수 있음을 보여 주었다.

Keywords

References

  1. Abbritti, M.C. and G. Muzi. 1995. Indoor air quality and health effects in office buildings. University of Milano and International Center for Pesticide Safety, Milan, Italy, Vol. 1, pp. 185-195. In M. Maroni (ed.), Proceedings of Healthy Buildings '95, An International Conference on Healthy Buildings in a Mild Climate.
  2. American Lung Association. 2001. In Air Quality. When you can't breathe, nothing else matters. www.lungusa.org/air/
  3. Brown, S.K., M. Sim, M.J. Abramson, and C.N. Gray. 1994. Concentrations of volatile organic compounds in indoor air - A review. Indoor Air 4:123-134. https://doi.org/10.1111/j.1600-0668.1994.t01-2-00007.x
  4. Brown, S.K. 1997. Volatile organic compounds in indoor air: sources and control. Chem. Australia, January/February:10-13.
  5. Burge, S., A. Hedge, S. Wilson, B.J. Harris, and A. Robertson. 1987. Sick building syndrome: a study of 4373 office workers. Ann. Occup. Hygiene 31:493-504. https://doi.org/10.1093/annhyg/31.4A.493
  6. Cape, J.N., J. Binnie, N. Mackie, and U.M. Skiba. 2000. Uptake of volatile organic compounds by grass. In proceedings of third SETAC world Congress, 2000, Brighton, UK.
  7. Collins, C.D., J.N. B. Bell, and C. Crews. 2000. Benzene accumulation in horticultural crops. Chemosphere 40:109-114. https://doi.org/10.1016/S0045-6535(99)00260-X
  8. Diaz, E. and M.A. Prieto. 2000. Bacterial promoters triggering biodegradation of aromatic pollutants. Curr. Opin. Biotech. 11:467-475. https://doi.org/10.1016/S0958-1669(00)00126-9
  9. Edwards, E.A. and D. Gabic-Galic. 1992. Complete mineralization of benzene by aquifer microorganisms under strictly anaerobic conditions. Appl. Environ. Microbiol. 58:2663-2666.
  10. Foyer, C.H., P. Descourvieres, and K.J. Kunert. 1994. Protection against oxygen radicals: An important defense mechanism studied in transgenic plants. Plant, Cell and Environ. 17:507-523. https://doi.org/10.1111/j.1365-3040.1994.tb00146.x
  11. Hutchins, S.R. 1991. Biodegradation of monoaromatic hydrocarbons by aquifer microorganisms using oxygen, nitrate or nitrous oxide as the terminal electron acceptor. Appl. Environ. Technol. 57:2403-2407.
  12. Jen, M.S., A.M. Hoylman, N.T. Edwards, and B.T. Walton. 1995. Experimental method to measure gaseous uptake of $^{14}C$-toluene by foliage. Environ. Expt. Bot. 35:389-398. https://doi.org/10.1016/0098-8472(95)00007-4
  13. Jenkins P.L., T.J. Phillips, E.J. Mulberg, and S.P. Hui. 1992. Activity patterns of Californians-Use of and proximity to indoor pollutant sources. Atmos. Environ. 26:2141-2148. https://doi.org/10.1016/0960-1686(92)90402-7
  14. Kim, K.J., M.J. Kil, J.S. Seob, E.H. Yoo, K.C. Son, and S.J. Kays. 2008. Efficiency of volatile formaldehyde removal by indoor plants: contribution of aerial plant parts versus the root zone. J. Amer. Soc. Hort. Sci. 133:521-526.
  15. Leahy, J.G. and R.R. Colwell. 1990. Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 54:305-315.
  16. Mendell, M.J. and A.H. Smith. 1990. Consistent pattern of elevated symptoms in air-conditioned office buildings: A re-analysis of epidemiological studies. Amer. J. Pub. Health, 80:1193-1199. https://doi.org/10.2105/AJPH.80.10.1193
  17. National Occupational Health and Safety Commission (Australia). 1991. Exposure standards for atmospheric contaminants in the occupational environment. Australian Government Printing Service, Canberra, Australia.
  18. Radwan, S.S., H. AL-Awadhi, N.A. Sorkhoh, and I.M. EL-Nemr. 1998. Rhizospheric hydrocarbon utilizing microorganisms as potential contributors to phytoremediation for the oily Kwaiti desert. Microbiol. Res. 153:247-251. https://doi.org/10.1016/S0944-5013(98)80007-4
  19. Sanderman, H.J.R. 1992. Plant metabolism of xenobiotiocs, Trends Biochem. Sci. 17:82-84. https://doi.org/10.1016/0968-0004(92)90507-6
  20. Schulte-Hostede, S., N.M. Darrall, L.W. Blank, and A.R. Wellburn. 1987. Air Pollution and plant metabolism, Elsevier, NY, USA.
  21. Systat Software, Inc., Point Richmond, USA
  22. Taylor, G.E., L.F. Pitelka, and M.T. Clegg. 1991. Ecological genetics and air pollution, Springer Verlag, NY, USA.
  23. Ugrekhelidze, D., F. Korte, and G. Kvestttadze. 1997. Uptake and transformation of benzene and toluene in plant tissues. Ecotoxicol. Environ. Safety 37:24-29. https://doi.org/10.1006/eesa.1996.1512
  24. Weschler, C.J. and H.C. Shields. 1997. Potential reactions among indoor air pollutants. Atmospheric Environ. 31:3487-3495. https://doi.org/10.1016/S1352-2310(97)00219-7
  25. Wolkoff, P. 1995. Volatile organic compounds - Sources, measurements, emissions and the impact on indoor air quality. Indoor Air. Suppl. No. 3.
  26. Wolverton, B.C. and J.D. Wolverton. 1993. Plants and soil microorganisms - removal of formaldehyde, xylene and ammonia from the indoor environment. Jour. Mississippi Academ. Sci. 38:11-15.
  27. Wood, R.A., R.L. Orwell, J. Tarran, F. Torpy, and M. Burchett. 2002. Potted-plant/growth media interactions and capacities for removal of volatiles from indoor air. J. Hort. Sci. Biotech. 77:120-129. https://doi.org/10.1080/14620316.2002.11511467
  28. Yoo, M.H., Y.J. Kwon, K.C. Son., and S.J. Kays. 2006. Efficacy of indoor plants for the removal of single and mixed volatile organic pollutants and physiological effects of the volatiles on the plants. J. Amer. Soc. Hort. Sci. 131:452-458.
  29. Zabiegata, B. 2006. Organic compounds in indoor environments. Polish J. Environ. Stud. 15:383-393.