• Title/Summary/Keyword: Organic livestock

Search Result 562, Processing Time 0.027 seconds

A Study on the Fuelization of Livestock Sludge Using Thermal Hydrolysis (열가수분해 반응을 이용한 가축분뇨 슬러지의 연료화에 관한 연구)

  • Song, Chul-Woo;Kim, Nam-Chan;Ryu, Jae-Keun;Kim, Jae-Min
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.3
    • /
    • pp.51-59
    • /
    • 2015
  • Livestock sludge contains high concentration of organic matter and some heavy metals. In case of discharging into the sea, it might have negative effects in the environment. In this study thermal hydrolysis reaction was applied for livestock sludge to determine the fuelization possibility and obtain the best operation conditions. Livestock sludges were thermally hydrolyzed at temperature range $170{\sim}210^{\circ}C$ in sealed high-temperature reactors. Liquid products and dewatered cakes were analyzed. The operation at $190^{\circ}C$ was found to be best effective condition. High heating value and low heating value were 5,050 kcal/kg and 4,740 kcal/kg, respectively. Therefore, fuelization of livestock sludge using thermal hydrolysis reactor is found to be highly effective.

Prevalence of Pathogenic Bacteria in Livestock Manure Compost and Organic Fertilizer (가축분퇴비와 유기질비료에서 병원성박테리아의 분포도 분석)

  • Jung, Kyu-Seok;Heu, Sung-Gi;Roh, Eun-Jung;Lee, Dong-Hwan;Yun, Jong-Chul;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.824-829
    • /
    • 2011
  • In recent years, there has been an increasing public concern about fecal contamination of water, air and agricultural produce by pathogens residing in organic fertilizers such as manure, compost and agricultural by-products. Efforts are now being made to control or eliminate the pathogen populations at on-farm level. Development of efficient on-farm strategies to mitigate the potential risk posed by the pathogens requires data about how the pathogens prevail in livestock manure composts and organic fertilizers. Microbiological analysis of livestock manure composts and organic fertilizers obtained from 32 and 28 companies, respectively, were conducted to determine the total aerobic bacteria count, coliforms, Escherichia coli count and the prevalence of Staphylococcus aureus, Bacillus cereus, Salmonella spp., Escherichia coli O157:H7, Listeria monocytogenes, and Cronobacter sakazakii. The total aerobic bacteria counts in the livestock manure composts and organic fertilizers were in the range of 7 to $9log\;CFU\;g^{-1}$ and 4 to $6log\;CFU\;g^{-1}$, respectively. In the livestock manure composts, coliforms and E. coli were detected in samples obtained from 4 and 2 companies, respectively, in the range of 2 to $5log\;CFU\;g^{-1}$ and $2log\;CFU\;g^{-1}$. In the organic fertilizers, coliforms and E. coli were detected in samples obtained from 4 and 1 companies, respectively, in the range of 1 to $3log\;CFU\;g^{-1}$ and $2log\;CFU\;g^{-1}$. In 3 out 32 compost samples, B. cereus was detected, while other pathogens were not detected. In 28 organic fertilizers, no pathogens were detected. The complete composting process can result in the elimination of pathogens in livestock manure compost and organic fertilizer. The results of this study could help to formulate microbiological guidelines for the use of compost in environmental-friendly agriculture. This research provides information regarding microbiological quality of livestock manure compost and organic fertilizer.

Nutritive Quality of the Crude Organic Fertilizer Produced with Coastal Aquaculture-Ground Bottom Sediments, Organic Wastes and Alkaline Stabilizers (유기성 폐기물과 알칼리 안정화제가 첨가된 연안 양식장 퇴적물 조비료의 영양성분 조성)

  • 김정배;강창근;이근섭;박정임;이필용
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1291-1298
    • /
    • 2002
  • To utilize coastal aquaculture ground bottom sediment in which concentrations of harmful pollutants are low and organic content is high as an organic fertilizer alkaline stabilizers such as CaO, Oyster shell, Mg(OH)$_2$ were added to the bottom sediment organic additives of livestock or food wastes. Nutritive qualities of crude fertilizers were measured to examine effects of alkaline stabilizers and organic waste additions. The Mg(OH)$_2$-added crude fertilizer had significantly lower total carbon(T-C) and nitrogen(T-N) content, reflecting the dilution effect due to great amount of Mg(OH)$_2$ addition. However, the addition of oyster shell had no significant effect on the T-C and T-N content of the fertilizer. $P_2O_5$ and $K_2$O content was considerably higher in the mixed sample of aquaculture ground bottom sediments and livestock wastes than in the mixture of the sediments and food wastes, resulting from higher $P_2O_5$ and $K_2$O content in livestock wastes. Addition of Mg(OH)$_2$ increased the content of MgO In the crude fertilizer but significantly reduced the content of other nutritive elements such as $P_2O_5$, $K_2$O and CaO. Addition of oyster shell as an alkaline stabilizer seemed to have the advantage of saving time and expenses far dryness due to its role as a modulator of water content. Moreover, additions of effect Mg(OH)$_2$ decreased the concentrations of heavy metals in the fertilizer by the dilution while additions of oyster shell had no influence on heavy metal concentrations in the fertilizer.

The Determination of Anaerobic Biodegradability Rates Livestock Byproducts Using Double First-Order Kinetic Model

  • Shin, Kook-Sik;Yoon, Young-man;Jung, Ha-Il;Hyun, Byung-Geun;Cho, Hyun-Joon;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.542-548
    • /
    • 2015
  • This study investigated methane productions and a degradation rate of organic matters by German standard method, VDI4630 test. In this study, 4 livestock byproducts from livestock farm were selected for the investigation. The objective of this study was to estimate a distribution of organic matters by using the double first-order kinetics model in order to calculate the rate of biodegradable organic matters which degrade rapidly in the initial stage and the persistently biodegradable organic matters which degrade slowly later. As a result, all the byproducts applied in this study showed rapid decomposition in the initial stage. Then the decomposition rate began to slow down for a certain period and the rate became 5 times slower than the initial decomposition rate. This trend of decomposition rate changes is typical conditions of organic matter decompositions. The easily degradable factors ($k_1$) ranged between $0.145{\sim}0.257day^{-1}$ and persistent degradable factors ($k_2$) were $0.027{\sim}0.080day^{-1}$. Among these results, greater organic matter decomposition rates from VDI4630 had greater $k_1$ values (0.257, $0.211day^{-1}$) and smaller $k_2$ values (0.027, $0.030day^{-1}$) for dairy wastewater and forage byproduct, respectively.

Strategies for Sustainability of the Project for Developing Large-Scale Environment-Friendly Agricultural Districts (광역친환경농업단지 조성사업에 따른 변화실태 및 지속가능기반 확충방안)

  • Heo, Seung-Wook;Kim, Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.21 no.3
    • /
    • pp.351-362
    • /
    • 2013
  • The Purpose of this paper is to suggest sustainable strategies of the project for developing large-scale environment-friendly agricultural districts (LSEAD). This study used assessment 3 indicators, efficiency, impact and sustainability of environment-friendly agricultural certification area and farmers, management situations of crop-livestock circulation center, educations for environment-friendly farming, changes of farmer's income and so on. This project has contributed to develop environment- friendly agriculture and model of LSEAD. And for sustainable development of LSEAD, it is necessary to renovate crop-livestock circulation centers, promote organic farming of resource-circulation type, converse to non-pesticide or organic farming of low pesticide one, do active marketing activities, establish a governance system of business projects and so forth.

A study on the possibility that livestock waste to RDF (축산폐기물의 고형연료화 가능성에 관한 연구)

  • Kim, Seong-Jung;Lee, Je-Hak
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.2
    • /
    • pp.51-55
    • /
    • 2013
  • This research conducted component analysis of pellet fuel using livestock waste and agricultural by-product and combustion characteristics. As the result of analyzing the characteristics of solid fuel using livestock waste, three components, element analysis, and heating value were suitable for the standard of solid fuel. In addition, content of ash consisted of high concentration of K, P, Na indicating the possibile usage as a soil conditioner. However, it was not suitable for solid fuel using only livestock waste due to the relatively low heating value. To improve the heating value and early ignition, we mixed agricultural by-products (i.e., chaff and sawdust) into livestock waste. The mixed material showed significant increase of combustibles and heating value with decrease of moisture content compared to the livestock waste only.

The Improvement of Certification Institution for Small Farming Cycling System (소규모 경축순환농업 육성을 위한 인증제도 개선 방안)

  • Choi, Deog-Cheon
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.4
    • /
    • pp.435-461
    • /
    • 2011
  • This study was conducted field surveys and theoretical discussion whether small farmers thinks there are economics of scope in small organically grown cropslivestock farming cycling system. The discussions are summarized as follows. At the end of October 2011, the cycling agriculture farms are only a total of 15 farmers, 0.1% of total organic farms in Korea. The FMD disease, FTA, family farm structure, the importance of animal health and welfare, agricultural cycles, when considering the valuation of the multifunctionality, alternative agriculture is small farming cycling system. Organic agriculture is a 'cooperation-cycling-family farm' in the interaction it is important to understand. The two groups were surveyed. Group 1 is 6 farmers who practicing cycling farming system, and Group 2 is the 33 farmers who wish to cycling farming system. Interview survey and the survey results was obtained as follows. First, We find that there are strong economies of scope, due to a decreased costs have increased net profit. Second, the multifunctional values is realized also cycling farming system. Third, but some certification standards leads to high transaction cost. Thus, a small family farm who wishing to target organic livestock certification standards need to improve.

A Study on the Estimation of Water Pollutants Reduction Ratio in Livestock Manure Fertilization (가축분뇨 자원화 처리시 수질오염물질 삭감율 산정 연구)

  • Oa, Seong Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.722-727
    • /
    • 2017
  • Livestock manure is known to be the main cause of non-point pollution in agricultural areas. The pollutant reduction ratio of livestock manure recycling to fertilizers was measured in order to analyze the effect on the water quality of the Total Maximum Daily Load (TMDL) system in Korea. The reduction ratio has been applied by theoretical consideration without a survey, and there is no value for Total Organic Carbon (TOC) newly introducing any organic items. The reduction ratio of each pollutant from this study was revealed as follows: TOC, BOD, T-N and T-P were 0.34, 0.60, 0.37, and 0.42 for individual farm and 0.38, 0.61, 0.45 and 0.44 for entrustment facilities, respectively. The reduction ratio of individual farm was surveyed as TOC 0.63, BOD 0.62, T-N 0.42 and T-P 0.32 for liquid fertilizer, and TOC 0.30, BOD 0.64, T-N 0.40 and T-P 0.48 for compost. The total reduction ratio was derived by multiplying the ratio for liquid fertilizer and compost by the respective load. Compared to the pollutant reduction ratio of the individual farm with entrustment facilities marking the higher in liquid fertilizer and the lower in compost. Through this study, we found the difference of pollutant reduction ratio between a livestock manure recycling process and facilities. Although phosphorus is known as a preservative matter, the treatment efficiency of T-P is analyzed to decrease by chemical precipitation.

A Study on Recycling Capacity Assessment of Livestock Manure (가축분뇨의 자원화 용량 평가에 관한 연구)

  • Ahn, Tae Woong;Choi, I Song;Oh, Jong Min
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.5
    • /
    • pp.311-320
    • /
    • 2008
  • Reusing livestock manure have various advantages in securing soil organic resources, and since the costs needed for converting them into liquefied fertilizers are relatively moderate compared to normal treatment, such methods are necessary. In this study, the Recycling Capacity Assessment of Gyeonggi-do was carried out by comparing between the fertilizer demands for specific crops based on the cultivation areas and the amount of fertilizer resources that are generated from livestock manure. From this assessment, the possibility of obtaining resources by converting livestock manure into fertilizers were evaluated. The amount generated of Livestock Manure in Gyeonggi-do were evaluated by applying the emission units to the number of livestock manure. And from the amount generated of Livestock Manure, the amount of fertilizer produced from Livestock Manure were calculated by using the fertilizer a component rate. When considering the amount of fertilizer produced from Livestock Manure based on the type of livestock, N 6,626 ton/year, $P_2O_5$ 1,824 ton/year, $K_2O$ 4,480 ton/year were produced from milk cow manure, while N 5,247 ton/year, $P_2O_5$ 2,772 ton/year, $K_2O$ 2,879 ton/year, were produced from beef cattle manure. N 14,924 ton/year, $P_2O_5$ 7,205 ton/year, $K_2O$ 6,750 ton/year were produced from pigs and N 12,651 ton/year, $P_2O_5$ 4,458 ton/year, $K_2O$ 5,542 ton/year were produced by chickens. So the total amount of fertilizers that can be obtained from livestock manure were 3,668 ton/year Nitrogen, 16,259 ton/year phosphate and 19,651 ton/year kalium. And the total fertilizer demands in Gyeonggi-do were Nitrogen 27,200 ton/year, Phosphate 8,853 ton/year, and kalium 13,211 ton/year respectively. Nitrogen which had higher demands than production quantities were considered as limitation factors in crop growth. So the Recycling Capacity Assessment was carried out mainly based on Nitrogen. Since the Nitrogen quantities that can be provided by recycling livestock manure were 3,532 ton/year lesser than the Nitrogen demands, it is estimated that it would be desirable to convert livestock manure into resources. But in order to properly convert the entire livestock manure into organic resources, the seasonal situation that effects the nitrogen demands of crops along with the regional effects due to the industrial structures should be seriously analyzed. In addition, a system that can effectively produce and manage fertilizer should be established.