• Title/Summary/Keyword: Organic fertilizers

Search Result 358, Processing Time 0.037 seconds

Environmental Effect of the Coffee Waste and Anti-Microbial Property of Oyster Shell Waste Treatment

  • Thenepalli, Thriveni;Ramakrishna, Chilakala;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.39-49
    • /
    • 2017
  • Coffee is one of the most popular and consumed beverages in the world, which leads to a high contents of solid residue known as spent coffee grounds (SCG). As is known, coffee beans contain several classes of health related chemicals, including phenolic compounds, melanoidins, diterpenes, xanthines and carotenoids. The waste water coming out of coffee industries has high concentration of organic pollutants and is very harmful for surrounding water bodies, human health and aquatic life if discharged directly into the surface waters. Hence it is essential to treat and manage the coffee waste. Oyster shells are a waste product from mariculture that creates a major disposal problem in coastal regions of southeast Korea. In the study, the oyster shell waste was used to treat the coffee waste and its effluents. Oyster shells are calcined at $1000^{\circ}C$ for 2 h, and allowed to test the calcined CaO powder ability to inhibit the growth of bacteria in different aging coffee wastes. Calcined oyster shell powder showed anti-bacterial effect that inhibited cell growth of Escherichia coli and other bacterial forms. The antimicrobial activity of calcium oxide from oyster shell waste for biological treatment and utilization as a fertilizers with economic ecofriendly in nature.

A proposal for empowering slum dwellers as a viable way of addressing urbanization challenges in Katanga slum, Kampala, Uganda

  • Omulo, Godfrey;Muhsin, Musinguzi;Kasana, Ismail;Nabaterega, Resty
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.432-438
    • /
    • 2017
  • Slum settlement, a direct result of the rapid worldwide urbanization is a common site in most developing countries. Uganda is among the top African countries with high number of slums. The status of Katanga slum located in the low-lands between Mulago national hospital and Makerere University is a typical of many other slums within Uganda. This project proposal seeks to tackle urbanization challenges by specializing in slum upgrading as a sustainable way of curbing the menace. An integrated toilet, biogas, poultry and backyard gardening project is proposed as a channel of boosting the Katanga slum dwellers' economic, sanitation and domestic energy status. Designed to serve up to 30 households, the project will utilize residual wastes from poultry houses and toilets to produce biogas and slurry. The biogas yield will provide clean cooking fuel and energy for lighting, while the slurry used as organic fertilizers to improve vegetable yields. The social, economic and environmental impacts of the project will empower the vulnerable women and children within the slums and reduce water pollution and land degradation. This affordable project can be applied in developing countries experiencing slum settlement challenges as a strategy for reducing urbanization pressure.

The Adoption of Traceability Systems by Farmers and Its Consumers' Recognition (농산물 생산이력제 도입 농가실태와 소비자 인지도)

  • Jeon, Myoung-Hee;Jung, Gu-Hyun;Kim, Hee-Dong
    • Journal of Agricultural Extension & Community Development
    • /
    • v.14 no.1
    • /
    • pp.117-147
    • /
    • 2007
  • The main goal of this study is to survey the actual condition of farm household adopt traceability of agricultural products and the consumers' recognition of the traceability. Thirty six farm household adopted traceability of agricultural products and one hundred twenty three consumers were surveyed for this study. A total of the cultivated area of surveyed farm household was 39.6ha-owned land(21.2ha) and Rented land(18.4ha)-and the cultivated area of crops with the traceability of agricultural product was 15.7ha, consisting of 39.6% of the whole cultivated area. 22.2% of agricultural traceability products was cultivated bychemical method and 77.8% of the them by environment-friendly agricultural methods-organic cultivation accounts for 2.8%, no-chemicals cultivation 47.2% and low-chemicals cultivation 27.8%. As a result of the consumer survey, 75.6% of respondents recognized agricultural product traceability and only 29.0% of them had experience to purchase traceability products. But 61.0% of surveyed people had intention to purchase traceability products in the future. It was found that consumers wanted to know about production traceability information of farm products in order to identify quality certification including environment-friendly certification, product quality such as taste, weight, grade, and the use of insecticides and fertilizers regarding use frequency and kinds of chemicals.

  • PDF

A Study on the Restoration of Neunggil Village Forests in Jinan (마을숲 복원에 관한 연구 - 전북 진안군 동향면 능금리 능길 마을을 사례로 -)

  • Park, Jee-Chul;Kim, Byung-Sup;Yun, Sung-Ho;Park, Sun-Mi
    • Journal of Korean Society of Rural Planning
    • /
    • v.10 no.3 s.24
    • /
    • pp.27-32
    • /
    • 2004
  • The purpose of this study is on identifying the restoration guidelines of supplementary village grove and villageside forest in case of Neunggil village in Jinan county of Korea. These forests were managed very well before industrialization by village residents in order to obtain fuels and organic fertilizers traditionally. But recently, these forests were abandoned by using natural gas, oil and chemical fertilizer. Therefore, species diversity of these forests was downward and traditional rural landscape was lost. Accordingly, this study suggested the restoration guidelines of these forests through restoring the relationship between man and nature. For this, vegetation map was made by quadrat method. And management guidelines of these forests were suggested by the analysis of vegetation map. Also, for the restoration of supplementary village grove, Miyawiki professor's method of Yokohama university through introducing potential natural vegetation was suggested.

Struvite recovery from swine wastewater and its assessment as a fertilizer

  • Ryu, Hong-Duck;Lee, Sang-Ill
    • Environmental Engineering Research
    • /
    • v.21 no.1
    • /
    • pp.29-35
    • /
    • 2016
  • This study evaluated the fertilizing value of struvite deposit recovered from swine wastewater in cultivating lettuce. Struvite deposit was compared to complex fertilizer, organic fertilizer and compost to evaluate the fertilizing effect of struvite deposit. Laboratory pot test showed that the struvite deposit better enhanced lettuce growth in comparison to commercial fertilizers. It was revealed that the growth rate of lettuce was simultaneously controlled by phosphorus (P) and magnesium (Mg). Moreover, nutrients such as nitrogen (N), P, K, calcium (Ca) and magnesium (Mg) were abundantly observed in the vegetable tissue of struvite pot. Meanwhile, struvite application led to the lower accumulation of mercury (Hg), lead (Pb), chromium ($Cr^{6+}$) and nickel (Ni). In addition, no detection of cadmium (Cd), arsenic (As) and nickel (Ni) in the lettuce tissue was observed in struvite application pots. The experimental results proved that the optimum struvite dosage for lettuce cultivation was 0.5 g struvite/kg soil. The column experiments clearly showed that ammonia nitrogen was more slowly released from struvite deposit than from complex fertilizer. Consequently, it was concluded that the struvite deposits recovered from swine wastewater were effective as a multi-nutrient fertilizer for lettuce cultivation.

Long-term Effects of Inorganic Fertilizer and Compost Application on Rice Sustainability in Paddy Soil

  • Lee, Chang Hoon;Park, Chang Young;Jung, Ki Youl;Kang, Seong Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.3
    • /
    • pp.223-229
    • /
    • 2013
  • Sustainability index was calculated to determine the best management for rice productivity under long-term inorganic fertilizer management's practices. It is based on nutrient index, microbiological index and crop index related to sustainability as soil function. Indicators for calculating sustainability index were selected by the comparison of soil properties and rice response in paddy soil with fertilization. Total twenty two indicators were determined to assess nutrient index, microbiological index and crop index in order to compare the effect of different fertilization. The indices were applied to assess the sustainability with different inorganic fertilizer treatments such as control, N, NK, NP, NPK, NPK+Si, and NPK+Compost. The long-term application of compost with NPK was the highest sustainability index value because it increased nutrient index, microbial index and crop index. The use of chemical fertilizers resulted in poor soil microbial index and crop index, but the treatments like NP, NPK, and NPK+Si were maintained sustainability in paddy soil. These results indicate that application of organic and chemical fertilizer could be a good management to improve rice sustainability in paddy soil.

Complete reuse of raw fishmeal wastewater: Evidence from a field cultivation study and economic analysis

  • Kang, Jang Ho;Jung, Hyun Yi;Kim, Joong Kyun
    • Environmental Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.271-281
    • /
    • 2018
  • To examine the feasibility of reuse of raw fishmeal wastewater, it was biodegraded by a microbial consortium in a $1-m^3$ reactor, and the final culture broth including mixed microbes was applied as biofertilizer to field cultivation of lettuce and Chinese cabbage. Moreover, economic analysis of the entire process was performed. A stable metabolism of organic matter degradation for 80 h with sufficient dissolved oxygen produced an amino acid content of 14.66 g per 100 g sample, along with increased cation and anion concentrations. The concentrations of N, P and K in the final culture broth were 2.26, 0.87 and 0.65%, respectively, while those of heavy metals were very low. In field cultivation of the two leafy vegetables, the biodegraded fishmeal wastewater showed better fertilizing ability than commercial fertilizers because of its high amino acid content. In addition, no external damage to leaves by the fertilization was observed. In economic analysis, the expected profitability from the practical reuse of raw fishmeal wastewater was estimated to be $491.68 per a single biodegradation, which corresponds to $25,567.36 per year. As a result, the complete reuse of fishmeal wastewater could be feasible and provide essential benefits.

Back to Nature-Based Agriculture: Green Livelihoods Are Taking Root in the Mekong River Delta

  • Lan, Ngo Thi Phuong;Kien, Nguyen Van
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.6
    • /
    • pp.551-561
    • /
    • 2021
  • Background and objective: Vietnam is prioritizing agricultural production for food export capacity in all national policies. As a result, for three decades, its agriculture has been making quite many remarkable achievements. Methods: The most successful one is that the nation has become one of the world's leading rice exporters and ensures its national food security. Through these endeavors, the Mekong River Delta (MRD), in particular, has emerged as a key region in ensuring national food security and rice export. Results: The new era can now see Vietnamese agriculture turning to place special emphasis on commodity quality and the improvement of the living environment. This is evidenced, for example, by the phenomenon that the MRD, as a rice basket of the whole country, is making moves back to nature-based agriculture with attempts to restore the natural ecology, including preserving and restoring local traditional rice seeds, adopting natural farming practices and minimizing the use of chemical fertilizers and pesticides. Conclusion: The case studies of nature-based farming practices in the MRD indicate that, while the national agriculture is generally developing large-scale production, the small-scale farming in the region, integrated with tourist and educational activities on-site, is meeting the demands of a highly potential domestic niche market. Moreover, this model appears to be a sustainable farming approach that defines itself as a working green livelihood for the region.

Water/nutrient use efficiency and effect of fertigation: a review

  • Woojin Kim;Yejin Lee;Taek-Keun Oh;Jwakyung Sung
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.919-926
    • /
    • 2022
  • Fertigation, which has been introduced in agricultural fields since 1990, has been widely practiced in upland fields as well as in plastic film houses as part of the crop production system. In accordance with demands in the agricultural sector, a huge number of scientific studies on fertigation have been conducted worldwide. Moreover, with a combination of advanced technologies such as big-data, machine learning, etc., fertigation is positioned as an indispensable tool to achieve sustainable crop production and to enhance nutrient and water use efficiency. In this review, we focused on providing valuable information in terms of crop production and nutrient/water use efficiency. A variety of fertigation studies have described that enhancement of crop production did not differ relative to conventional method or slightly increased. In contrast, fertigation significantly improved nutrient/water use efficiency, with a reduction in use ranging from 20 to 50%. Water-soluble organic resources such as livestock manure and agricultural byproducts also have been identified as useful resources like chemical fertilizers. Furthermore, the initial irrigation point was generally recommended in a range of -10 - -40 kPa, although the point differed according to the crop and crop growth stage. From this review, we suggest that fertigation, which is closely integrated with advanced technology, could be a leading technology to attain not only food security but also carbon neutrality via improvement of nutrient/water use efficiency.

Application of LCA Methodology on Lettuce Cropping Systems in Protected Cultivation (시설재배 상추에 대한 전과정평가 (LCA) 방법론 적용)

  • Ryu, Jong-Hee;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.705-715
    • /
    • 2010
  • The adoption of carbon foot print system is being activated mostly in the developed countries as one of the long-term response towards tightened up regulations and standards on carbon emission in the agricultural sector. The Korean Ministry of Environment excluded the primary agricultural products from the carbon foot print system due to lack of LCI (life cycle inventory) database in agriculture. Therefore, the research on and establishment of LCI database in the agriculture for adoption of carbon foot print system is urgent. Development of LCA (life cycle assessment) methodology for application of LCA to agricultural environment in Korea is also very important. Application of LCA methodology to agricultural environment in Korea is an early stage. Therefore, this study was carried out to find out the effect of lettuce cultivation on agricultural environment by establishing LCA methodology. Data collection of agricultural input and output for establishing LCI was carried out by collecting statistical data and documents on income from agro and livestock products prepared by RDA. LCA methodology for agriculture was reviewed by investigating LCA methodology and LCA applications of foreign countries. Results based on 1 kg of lettuce production showed that inputs including N, P, organic fertilizers, compound fertilizers and crop protectants were the main sources of major emission factor during lettuce cropping process. The amount of inputs considering the amount of active ingredients was required to estimate the actual quantity of the inputs used. Major emissions due to agricultural activities were $N_2O$ (emission to air) and ${NO_3}^-$/${PO_4}^-$ (emission to water) from fertilizers, organic compounds from pesticides and air pollutants from fossil fuel combustion in using agricultural machines. The softwares for LCIA (life cycle impact assessment) and LCA used in Korea are 'PASS' and 'TOTAL' which have been developed by the Ministry of Knowledge Economy and the Ministry of Environment. However, the models used for the softwares are the ones developed in foreign countries. In the future, development of models and optimization of factors for characterization, normalization and weighting suitable to Korean agricultural environment need to be done for more precise LCA analysis in the agricultural area.