• Title/Summary/Keyword: Organic electronics

Search Result 720, Processing Time 0.03 seconds

Polymer Phosphorescent Light-Emitting Devices Doped with Iridium Complex (이리듐 합성물 기반의 인광 고분자 발광 소자)

  • Kim, Sung-Jin
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.4
    • /
    • pp.254-258
    • /
    • 2009
  • We herein report on polymer phosphorescent light-emitting devices doped with iridium complex. The emitting layer of poly(N-vinylcabazole) and tris(2-phenylpyridine)iridium was fabricated by low speed dip-coating of 10, $20{\mu}m$/s. The devices showed stable current increasing leakage current at turn-on voltage. Compared to conventional spin-coating based organic light-emitting devices, the driving voltage by dip-coating observed lower values of 5.8 and 6.7 V at the luminance of 100 Cd/$cm^2$.

Molecular Distribution depending on the Cooling-off Condition in a Solution-Processed 6,13-Bis(triisopropylsilylethynyl)-Pentacene Thin-Film Transistor

  • Park, Jae-Hoon;Bae, Jin-Hyuk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.402-407
    • /
    • 2014
  • Herein, we describe the effect of the cooling-off condition of a solution-processed 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene) film on its molecular distribution and the resultant electrical properties. Since the solvent in a TIPS-pentacene droplet gradually evaporates from the rim to the center exhibiting a radial form of solute, for a quenched case, domains of the TIPS-pentacene film are aboriginally spread showing original features of radial shape due to suppressed molecular rearrangement during the momentary cooling period. For the slowly cooled case, however, TIPS-pentacene molecules are randomly rearranged during the long cooling period. As a result, in the lopsided electrodes structure proposed in this work, the charge transport generates more effectively under the case for radial distribution induced by the quenching technique. It was found that the molecular redistribution during the cooling-period plays an important role on the magnitude of the mobility in a solution-processed organic transistor. This work provides at least a scientific basis between the molecular distribution and electrical properties in solution-processed organic devices.

Tip-Enhanced Raman Scattering with a Nanoparticle-Functionalized Probe

  • Park, Chan-Gyu;Kim, Ju-Young;Lee, Eun-Byoul;Choi, Han-Kyu;Park, Won-Hwa;Kim, Jin-Wook;Kim, Zee-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1748-1752
    • /
    • 2012
  • We carried out the tip-enhanced Raman scattering (TERS) with a tip that is functionalized with a Aunanoparticle (AuNP, with a diameter of 250 nm). The AuNP tip is fabricated by a direct mechanical pickup of a AuNP from a flat substrate, and the TERS signal from the AuNP tip - organic monolayer - Au thin film (thickness of 10 nm) is recorded. We find that such a AuNP-tip interacting with a thin film routinely yields signal enhancement larger than ${\sim}10^4$, which is sufficient not only for local (with detection area of ~200 $nm^2$) Raman spectroscopy, but also the nanometric imaging of organic monolayers within a reasonable acquisition time (~20 minutes/image).

Pixel Circuit with Threshold Voltage Compensation using a-IGZO TFT for AMOLED

  • Lee, Jae Pyo;Hwang, Jun Young;Bae, Byung Seong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.594-600
    • /
    • 2014
  • A threshold voltage compensation pixel circuit was developed for active-matrix organic light emitting diodes (AMOLEDs) using amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO-TFTs). Oxide TFTs are n-channel TFTs; therefore, we developed a circuit for the n-channel TFT characteristics. The proposed pixel circuit was verified and proved by circuit analysis and circuit simulations. The proposed circuit was able to compensate for the threshold voltage variations of the drive TFT in AMOLEDs. The error rate of the OLED current for a threshold voltage change of 3 V was as low as 1.5%.

3.5-Inch QCIF AMOLED Panels with Ultra-low-Temperature Polycrystalline Silicon Thin Film Transistor on Plastic Substrate

  • Kim, Yong-Hae;Chung, Choong-Heui;Moon, Jae-Hyun;Lee, Su-Jae;Kim, Gi-Heon;Song, Yoon-Ho
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.308-314
    • /
    • 2008
  • In this paper, we describe the fabrication of 3.5-inch QCIF active matrix organic light emitting display (AMOLED) panels driven by thin film transistors, which are produced by an ultra-low-temperature polycrystalline silicon process on plastic substrates. The over all processing scheme and technical details are discussed from the viewpoint of mechanical stability and display performance. New ideas, such as a new triple-layered metal gate structure to lower leakage current and organic layers for electrical passivation and stress reduction are highlighted. The operation of a 3.5-inch QCIF AMOLED is also demonstrated.

  • PDF

Efficient White Organic Light-Emitting Diodes (WOLEDs) with Device Structure Modification

  • Kim, Jun-Ho;Seo, Ji-Hoon;Seo, Ji-Hyun;Hyung, Gun-Woo;Lee, Kum-Hee;Yoon, Seoung-Soo;Kim, Young-Kwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1403-1406
    • /
    • 2007
  • An effective WOLED structure was demonstrated which improved a luminous efficiency and white color chromaticity independent on applied bias by employing effective carrier transporting layer, without any alteration of emissive materials. The modified WOLEDs exhibited 2 times higher luminous efficiency than the control device and showed balanced white emission during an operation.

  • PDF

Fluorescent white organic light-emitting diode structures with dye doped hole transporting layer

  • Galbadrakh, R.;Bang, H.S.;Baek, H.I.;Lee, C.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1407-1410
    • /
    • 2007
  • This work reports on three primary color fluorescent white organic light emitting diode (WOLED) with simple device structure where only a part of the hole transporting layer was doped with dye. The maximum luminance of the device reaches $35000\;cd/m^2$ at a drive voltage below 11V and external quantum efficiency of the device is above 1% in the wide range of luminance from 10 to $35000\;cd/m^2$ and reaches its highest 1.6% at $500\;cd/m^2$. The chromaticity coordinate shift of the device is negligible in this wide range of luminance. The blue shift of emission color with an increase of current density was attributed to the narrowing of recombination zone width with raise of current density.

  • PDF

Performance Analysis of Layered and Blended Organic Light-Emitting Diodes

  • Park, Jong-Woon;Yim, Yeon-Chan;Heo, Gi-Seok;Kim, Tae-Won;Lee, Jong-Ho;Park, Seung-Hwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.424-427
    • /
    • 2008
  • We make performance simulations of three different organic light-emitting diodes (OLEDs), one of which is based on a conventional layered structure and the others on a blended structure where an emitting layer (EML) is either uniformly or stepwise mixed with an electron transport layer (ETL), Tris-(8-hydroxyquinoline) aluminum ($Alq_3$).

  • PDF

The Fabrication and Analysis of the White Organic Electroluminescent Devices by varying the Doping Concentrations of Rubrene and the Thickness of NPB layer (Rubrene의 도핑량과 NPB층의 두께변화에 따른 백색 유기전계발광소자 제작 및 분석)

  • 조재영;김중연;최성진;강명구;신선호;주성후;오환술
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.37-40
    • /
    • 2002
  • We have been fabricated the white organic electroluminescent devices using vacuum evaporation method. The structure of the white OELD is Glass/1T0/NPB/DPVBi/AI $q_{3:}$ Ru bren e/B CP/Alq $q_3$/Al. We have got the white emission with two-wavelength that is mixing blue emission in DPVBi layer and orange emission in Al $q_{3:}$Rubrene layer by varying tile doping concentrations of Rubrene and the thickness of NPB layer.yer.

  • PDF

Threshold voltage influence reduction and Wide Aperture ratio in Active Matrix Orgnic Light Emitting Diode Display (AMOLED(active matrix organic light emitting diode) 의 문턱전압 보상과 화소구조에 대한 연구)

  • 김정민;곽계달;신흥재;최성욱
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.257-260
    • /
    • 2002
  • This paper describes the pixel of AMOLED(act ive matrix organic light emitting diode) driving circuit by poly-sl technology. The area per pixel is 278um$\times$278um in 120$\times$160(2.2 inch) Driving the OLEDS with active matrix leads to the lower voltage operation, the lower peak pixel currents and the display with much greater efficiency and brightness The role of the active matrix is to provide a constant current throughout the entire frame time and is eliminating the high currents encountered In the passive matrix approach, This design can support the high resolutions expected by the consumer because the current variation specification is norestricted. The pixel has been designed driving TFT threshold voltage cancellation circuit and wide aperture ratio circuit that communizes 4 pixel. The test simulation results and layout are 11% per threshold-current var Eat ion and 12.5% the aperture ratio of increase.

  • PDF